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ABSTRACT OF DISSERTATION

ANALYSIS OF SECURITY MEASURES FOR SEQUENCES

Stream ciphers are private key cryptosystems used for security in communication and
data transmission systems. Because they are used to encrypt streams of data, it is
necessary for stream ciphers to use primitives that are easy to implement and fast
to operate. LFSRs and the recently invented FCSRs are two such primitives, which
give rise to certain security measures for the cryptographic strength of sequences,
which we refer to as complexity measures henceforth following the convention. The
linear (resp. N -adic) complexity of a sequence is the length of the shortest LFSR
(resp. FCSR) that can generate the sequence. Due to the availability of shift reg-
ister synthesis algorithms, sequences used for cryptographic purposes should have
high values for these complexity measures. It is also essential that the complexity
of these sequences does not decrease when a few symbols are changed. The k-error
complexity of a sequence is the smallest value of the complexity of a sequence ob-
tained by altering k or fewer symbols in the given sequence. For a sequence to be
considered cryptographically ‘strong’ it should have both high complexity and high
error complexity values.

An important problem regarding sequence complexity measures is to determine
good bounds on a specific complexity measure for a given sequence. In this thesis
we derive new nontrivial lower bounds on the k-operation complexity of periodic
sequences in both the linear and N -adic cases. Here the operations considered are
combinations of insertions, deletions, and substitutions. We show that our bounds
are tight and also derive several auxiliary results based on them.

A second problem on sequence complexity measures useful in the design and
analysis of stream ciphers is to determine the number of sequences with a given fixed
(error) complexity value. In this thesis we address this problem for the k-error linear
complexity of 2n-periodic binary sequences. More specifically:

1. We characterize 2n-periodic binary sequences with fixed 2- or 3-error linear
complexity and obtain the counting function for the number of such sequences
with fixed k-error linear complexity for k = 2 or 3.
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2. We obtain partial results on the number of 2n-periodic binary sequences with
fixed k-error linear complexity when k is the minimum number of changes re-
quired to lower the linear complexity.

Keywords: stream ciphers, LFSRs, FCSRs, sequence complexity measures, k-error
complexity
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1 Introduction

Over the past three decades digital computers and computer networks have revolu-
tionized the ways in which information is processed and communicated. Wireless
and sensor networks have further improved our ability and made it more convenient
to acquire and process data and communicate information. The digital revolution
has had a significant impact on all spheres of human life. Digital computing and
communication have become indispensable for making rapid progress in physical and
biological sciences, engineering, and even in arts and sports.

While computers and other electronic marvels mostly hastened the advancement
of science and technology, the past fifteen years has marked a sharp increase in the
way they are used by individuals once they became affordable for personal use. The
advent of PCs, the Internet, and cellular phones has made it easy for people to
communicate with others and do activities like paying bills, buying merchandise, and
handling financial transactions. While this has tremendously increased convenience
and productivity, it has also created a great risk due to accidental disclosure of, or
malicious attempts to gain access to, sensitive information. Instead of a few watchful
and needfully paranoid security experts, the current situation requires all individuals
to be careful when using digital communication.

In this chapter we introduce concepts and ideas fundamental to secure communi-
cation, which form the basis for this thesis.

1.1 Cryptography and Stream Ciphers

Cryptography is the mathematical study of techniques and tools to hide information
and to communicate over insecure channels so that it is infeasible for an eavesdropper
to understand what is being communicated. While cryptography has been used since
at least ancient Roman times for military purposes, in the past three decades it has
become essential for the functioning of the modern digital society.

Suppose a sender wants to send a message to a receiver securely. In all cryptosys-
tems the sender and receiver have some secret information — so called encryption
and decryption keys. The sender uses her key to scramble the message in such a way
that (hopefully) only the legitimate receiver who has the valid decryption key can un-
scramble it. A private key cryptosystem is a cryptographic scheme where encryption
and decryption keys are identical. Stream ciphers are private key cryptosystems used
for security in settings where very high speed is essential and the users can accept a
suboptimal level of security. They are typically used in digital telephones, video on
demand, and other applications where the volume of data being transmitted is very
high. In a stream cipher the message is treated as a sequence of symbols from a fixed
alphabet, usually either the binary alphabet {0, 1} or the set of all bytes or words.
The key stream is also a sequence of symbols, usually from the same alphabet used
for message streams. The sender encrypts each message symbol by combining it with
the next key stream symbol using modular arithmetic. The resulting new sequence,

1
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Figure 1.1: Stream Cipher Schematic

called the cipher, is sent across the channel to the receiver. The receiver uses the
same key stream to decrypt the cipher by performing the opposite operation to that
performed by the sender to get back message symbols. All of the security of a stream
cipher comes from the design and analysis of the generator of the key stream.

Although messages and key streams can be treated as composed of 1s and 0s, the
actual generation of the key stream can usually be over symbols from a finite field
Fq of size q where q is a power of a prime. For simplicity, in this section we restrict
our attention to the binary field F2 = {0, 1} with addition and multiplication modulo
2. The schematic for a stream cipher is shown in Figure 1.1. A generator G with
an initialization seed I (which acts as the key for the generator) is used to generated
the key stream K for encryption. Since the key stream used for both encryption and
decryption should be same, an identical generator is used at the receiver’s end. Let
M = m0,m1, . . . be the message symbol sequence and let K = k0, k1, . . . be the key
stream. The sender forms and transmits the cipher C = c0, c1, . . . where ci = mi ⊕ki,
for i = 0, 1, . . . . The symbol ⊕ denotes addition modulo 2 (or XOR) given by
0 ⊕ 1 = 1 ⊕ 0 = 1 and 1 ⊕ 1 = 0 ⊕ 0 = 0. The receiver recovers the message by
performing another XOR operation between the same key stream K and the cipher
C to obtain mi = ci ⊕ ki, where i = 0, 1, . . .. An attacker who has access to the
cipher that is transmitted cannot, the sender hopes, understand the message if he
does not know the key stream. The typical assumption in the analysis of the security
of stream ciphers is that the attacker has access to a part of the key stream (this
can be found by knowing a piece of the message and the corresponding piece of the
cipher) and wants to use this to predict the remainder of the key stream. Thus, the
problem of designing a good stream cipher is reduced to the problem of designing a
fast key stream generator whose full output is hard to predict from a prefix of the
output.

1.2 Thesis Organization

Linear feedback shift registers (LSFRs)—see Section 2.1—are widely used as com-
ponents in key stream generators for use in stream ciphers. Recently, FCSRs are
also being used to build stream ciphers [3]. In Chapter 2 we discuss the architecture
of LFSRs and FCSRs and present some properties that make them suitable for use
in stream ciphers. We also introduce linear complexity and N -adic complexity, the

2
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sequence security measures that arise from LFSRs and FCSRs respectively. We give
formal definitions and also discuss several variants of these measures providing the
motivation for each measure. We list the standard problems that are considered for
sequence complexity measures and present some classical results on this topic.

Chapters 3 and 4 form the main contribution of this thesis1. In Chapter 3 we
present our results on lower bounds for the error linear complexity and the error
N -adic complexity of periodic sequences. We show that there exist infinite families
of sequences that achieve the bounds in the linear case. These results also give new
nontrivial lower bounds on the minimum number of operations required to lower the
complexity for both the linear and N -adic cases.

In Chapter 4 we obtain counting functions for the k-error linear complexity of 2n-
periodic binary sequences. We analyze the Games-Chan algorithm and obtain some
properties of the structure of 2n-periodic binary sequences. For a given L and an
integer C in a certain range, we determine the counting function for the number of
such sequences with linear complexity L and k-error linear complexity C when k is the
minimum number of changes needed to lower the linear complexity of sequences with
linear complexity L. We also determine the counting function for the number of 2n-
periodic binary sequences with fixed 2-error or 3-error linear complexity. Throughout
the chapter we motivate the problems we solve and survey results on complexity
measures for prime power periodic sequences.

In Chapter 5 we discuss future research directions on sequence complexity mea-
sures. We give a brief account of stream cipher design and analysis and list problems
we intend to pursue in the future.

Copyright c© Ramakanth Kavuluru, 2009.

1This thesis is based upon work supported, in part, by the National Science Foundation under
Grant No. CCF-0514660. Any opinions, findings, and conclusions or recommendations expressed in
this thesis are those of the author and do not necessarily reflect the views of the National Science
Foundation

3
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2 Background and Preliminaries

In this chapter we introduce LFSRs, FCSRs, and some of their properties. For
detailed expositions on LFSRs and their properties please refer to the books by
Golomb [20], Golomb and Gong [21], and McEliece [50]. An upcoming book by
Goresky and Klapper [23] covers both LFSRs and FCSRs. Based on these shift
registers we introduce sequence complexity measures, which form the basis for the
main results in the thesis. We discuss the motivation for studying these complexity
measures and present some well known results on them.

2.1 LFSR and FCSR Basics

LFSRs have been used for at least 50 years as building blocks for a wide variety of com-
munications and computing applications, including stream ciphers, error correcting
codes, CDMA spread spectrum communication, and quasi-Monte Carlo applications.
LFSRs are fast and simple to implement in hardware. The statistical properties of
LFSR sequences are also thoroughly studied using well known algebraic methods,
especially the theory of finite fields.

LFSRs are used to generate sequences that satisfy homogeneous linear recurrence
relations over finite fields. (Please see the book by Lidl and Niederreiter [45] for
details of finite field theory.) Let Fq be the finite field with q = pr elements where
p is a prime and r is a positive integer. An LFSR has a fixed number of cells each
loaded with an element in Fq and tapped by using an element of Fq. Let m be the
number of cells in an LFSR and let c1, . . . , cm ∈ Fq be their taps as shown in Figure
2.1. In each step the LFSR operates by shifting the contents of the register to the
right by one cell and the right most element sn−m is output as the next element of
the sequence. The new element sn fed back into the left most cell is computed by

sn =
m∑

i=1

cisn−i,

where the summation is using addition in Fq. The state of the LFSR at any particular
step is given by the tuple (sn−m, . . . , sn−1).

Definition 2.1. A sequence S = (s0, s1, . . .) is called eventually periodic if and only
if there exist integers r > 0 and k ≥ 0 such that sn+r = sn for all n ≥ k. The smallest
such r is called the least period of S. If there exists such an r with k = 0, then S is
called strictly periodic or just periodic.

Since the number of possible states for an LFSR of a fixed length m is qm, se-
quences produced by LFSRs are eventually periodic as a state must repeat after qm

states. Conversely any eventually periodic sequence can be generated by some LFSR.
We can also see that a sequence generated by an LFSR is periodic if the tap on the
right most cell is nonzero. The maximum period of any sequence generated by an

4
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sn−1 sn−2 · · · sn−m+1 sn−m

��
��
c1 ��

��
c2 ��

��
cm−1 ��

��
cm· · ·

⊕

sn

- -
out

�
�

�
�

Figure 2.1: A Linear Feedback Shift Register of Length m.

LFSR of length m is qm − 1: the all zero state cannot be included since it would
result in a sequence of period 1.

We associate a connection polynomial f(x) to an LFSR based on its taps as

c(x) = c0 + c1x+ . . .+ cm−1x
m, where c0 = −1,

which is useful to analyze sequences generated by the LFSR. We enumerate some of
the properties of LFSRs. A polynomial c(x) of degree m in Fq is called primitive if
it has a root in Fqm that is a primitive element of F∗

qm = Fqm \ {0}.

(i) Every period of any sequence generated by the LFSR with connection polyno-
mial c(x) divides every T ≥ 1 such that c(x)|xT − 1.

(ii) The power series
∑

i≥0 six
i associated with a sequence S = (s0, s1, . . .) generated

by an LFSR is a rational function over Fq[x] of the form g(x)/c(x). The sequence
is periodic if and only if deg(g(x)) < deg(c(x)).

(iii) An LFSR sequence with maximal period 2m − 1 is called an m-sequence. M-
sequences are sequences generated by LFSRs whose connection polynomials are
primitive.

While LFSRs are simple and efficient, researchers have also been looking for other
efficient ways of generating pseudorandom sequences. One such way is to add a small
amount of memory to the basic shift register architecture that can be used as a “carry”
in the calculations. This idea is originally motivated by the summation combiner [75],
which adds two binary sequences using addition with carry (as opposed to addition
modulo 2) in an attempt to produce hard-to-predict sequences for cryptographic
purposes. To analyze the summation combiner Klapper and Goresky [41] introduced
the idea of adding memory into the usual LFSR structure and thus invented FCSRs in
1993. It should be noted here that the same idea was introduced for random number
generation around the same time by Couture and L’Ecuyer [10] and Marsaglia [47].

FCSRs are thus an arithmetic or with-carry analog of LFSRs. An FCSR generates
sequences over {0, . . . , N − 1} for some N ≥ 2. The analysis of FCSRs is based on
algebra over the N -adic numbers.

5
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Definition 2.2. An N -adic number is an infinite expression

a =
∞∑

i=0

aiN
i,

where a0, a1, . . . ∈ {0, . . . , N − 1}.

The set of N -adic numbers is denoted by ZN . The addition and multiplication are
defined to take carries into account, which is the main difference in the corresponding
operations over the ring of formal power series in x. With these operations ZN

is a ring and the additive inverse of the multiplicative identity element is −1 =
(N − 1) + (N − 1)N + (N − 1)N2 + · · · .

zn−1 sn−1 sn−2 · · · sn−m+1 sn−m

��
��
q1 ��

��
q2 ��

��
qm−1 ��

��
qm· · ·

Σ-

div N
�

mod N
- -

out

�
�

�
�

Figure 2.2: A Feedback With Carry Shift Register of Length m.

The architecture of an FCSR is similar to that of an LFSR with the exception of
a memory cell that is used in the computation of the element fed back in each step.
Figure 2.2 shows the architecture of an FCSR with m cells. The state of the FCSR is
determined by the contents of the m cells and the value in the memory register and
is represented by (sn−m, . . . , sn−1; zn−1) where sn−i ∈ {0, . . . , N − 1} and zn−1 ∈ Z.

In each step the state change operation is described as follows.

(i) Compute the integer sum

σn =
m∑

i=1

qisn−i + zn−1.

(ii) Shift the contents one step to the right and output the element in the right
most cell.

(iii) Put sn = σn mod N in the left most cell.

(iv) Put zn = ⌊σn/N⌋ in the memory cell.

6



www.manaraa.com

We associate the connection number

q = q0 + q1N + · · · + qmN
m, where q0 = −1,

corresponding to the m taps. We have the following properties for FCSRs.

(i) The N -adic number
∑

i≥0 siN
i associated with a sequence S = (s0, s1, . . .) gen-

erated by an FCSR is a rational number of the form −p/q where q is the con-
nection number of the FCSR. We have the following facts about the periodicity
of S.

a) gcd(N, q) = 1.

b) S is eventually periodic.

c) −p/q = 1 if and only if S = (N − 1, N − 1, . . .)

d) S is periodic if and only if 0 ≤ p ≤ q.

(ii) Every period of any sequence generated by the FCSR with connection number
q divides every T ≥ 1 such that q|NT −1. In particular, the least period divides
the order of N modulo q.

(iii) From (ii) the maximal period of an FCSR sequence is q − 1 which is achieved
if and only if N is primitive modulo q and q is prime. L-sequences are those
sequences generated by FCSRs with prime connection numbers and with N
primitive modulo the connection number.

Note that the memory component in FCSRs is an integer. So for practical purposes
memory should be bounded over any infinite execution of an FCSR, which turns out
to be the case as shown by Klapper and Goresky [23, Theorem 7.3.2].

2.2 Linear Complexity and N-adic Complexity Measures

LFSRs and FCSRs give rise to security measures that determine the unpredictability
of a sequence based on the size of the registers that can generate the sequence. In
this section we explore these measures, their properties, and several interesting results
and problems about them.

2.2.1 Linear Complexity

Linear complexity and related measures have been explored extensively over the past
five decades. We start with a definition that is important from an engineering point
of view.

Definition 2.3. Let S = (s0, s1, . . .) be a finite or infinite sequence over Fq. The
linear complexity L(S) of S is the length of smallest LFSR that can generate S.

7
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We note that if S in Definition 2.3 is a finite string of length n, then L(S) denotes
the length of the shortest LFSR whose first n output symbols coincide with S.

For the rest of the document let f ∗(x) denote the reciprocal polynomial of f(x)
defined as f ∗(x) = xdeg ff(1/x). We recall that a recurrence relation satisfied by
the sequence S = (s0, s1, . . . ) generated by the LFSR of length m with connection
polynomial c(x) =

∑m

i=1 cix
i − 1 is

sn − (c1sn−1 + · · · + cmsn−m) = 0, for all n ≥ m.

We call the polynomial c∗(x) the characteristic polynomial associated with this re-
currence relation where c(x) is the connection polynomial of the LFSR. A sequence
might satisfy more than one recurrence relation and hence can have many character-
istic polynomials. The unique monic characteristic polynomial with the least degree
is called the minimal polynomial of S. Hence the linear complexity can also be de-
fined as the least order of a homogeneous linear recurrence relation satisfied by the
sequence. If cm 6= 0, that is, for a periodic sequence, the linear complexity can also
be defined as the degree of its minimal polynomial.

Let S be a periodic sequence of period T and let S(x) = s0 + s1x+ · · ·+ sT−1x
T−1

be the polynomial corresponding to its first period (s0, s1, . . . , sT−1). We can see that

∞∑

i=0

six
i =

S(x)

1 − xT
.

If g(x)/f(x) is the reduced form of S(x)/(1−xT ) so that gcd(f(x), g(x)) = 1, we call
f(x) the minimal connection polynomial and f ∗(x) the minimal polynomial. We can
also express the linear complexity as L(S) = T − deg(gcd(S(x), 1 − xT )).

The smallest LFSR that generates a given sequence can be determined using the
Berlekamp-Massey algorithm [48] using only the first 2L elements of the sequence in
O(L2)1 field operations, where L is the linear complexity of the sequence. Hence,
for cryptographic purposes, sequences with high linear complexity are essential, as
an adversary would then need large initial segments of the sequences to recover the
LFSRs that generate them using the Berlekamp-Massey algorithm. It is important to
note that the algorithm is adaptive in the sense that each new available bit can be used
to update the LFSR in worst case linear time. This is suitable for attackers using a
known plain text attack when the number of bits available might not be known ahead
of time. On a side note it is interesting that generators with low linear complexity
are also undesirable for Monte Carlo and quasi-Monte Carlo based applications [66].

2.2.2 N-adic Complexity

Linear complexity measures how large an LFSR is required to generate a given se-
quence. While “size” is just the number of register cells in an LFSR, it also includes

1 For a T -periodic sequence, Berlekamp-Massey algorithm takes O(T 2) field operations. Black-
burn [5] adapted this algorithm to give an asymptotically faster algorithm with time complexity
O(T (log T )2 log log T )

8
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the memory cells for an FCSR. In this section we present two different notions of
complexity for FCSR sequences and present some known results.

The number of basic register cells in an FCSR is one less than the number of
coefficients in the N -adic expansion of q + 1 where q is the connection number. For
periodic sequences we also know that the number of memory cells required is at most
the logN of the number of cells in the basic register (see [23, Theorem 7.3.2]) and
thus can be ignored. But for eventually periodic sequences the number of memory
cells might be more than the length of the basic register and should be counted in
the size of an FCSR. We consider two related measures to estimate the minimal size
of an FCSR that generates a given sequence.

Let S = (s0, s1, . . .)
∞ be an eventually periodic N -ary sequence. Consider an

FCSR with connection number q = −1+q1N+ · · ·+qmN
m, where qm 6= 0, and initial

memory z that outputs this sequence.

Definition 2.4. The N -adic span ΛN(S) of an N -ary eventually periodic sequence
S is the smallest value of

Λ = m+ max(⌊logN(
m∑

i=0

qi)⌋ + 1, ⌊logN(|z|)⌋ + 1) + 1

that occurs among all FCSRs whose output is the sequence S.

In Definition 2.4, for a given FCSR, Λ is a bound on the number of N -ary cells
needed to represent the state of the FCSR. We note that the second +1 in Λ is for
the sign bit to accommodate negative memory values.

Definition 2.5. Let −p/q, where gcd(p, q) = 1, be the rational number whose N -adic
expansion agrees with the N -adic number associated with sequence S. The N -adic
complexity of S is the real number

λN(S) = logN(max(|p|, |q|)).

So the N -adic span of a sequence is a positive integer that counts the number
of N -ary cells in the register and memory of the smallest FCSR that generates the
sequence and is useful from an implementation point of view. The N -adic complexity
is a real number which estimates the smallest size of the basic register of an FCSR
and is more useful from a mathematical point of view.

Let S = (s0, s1, . . . , sT−1) be a periodic sequence with period T and let S(N) =
s0 + s1N + · · ·+ sT−1N

T−1 be the integer associated with S. Then −S(N)/(NT − 1)
is a rational representation of the N -adic number corresponding to S. The N -adic
complexity of S is given by

λN(S) = logN

(
NT − 1

gcd(S(N), NT − 1)

)
.

For an eventually periodic sequence S, the N -adic span and the N -adic complexity
are related by

|(ΛN(S) − 2) − λN(S)| ≤ logN(λN(S)) + 1.

9
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Hence we can see that for practical purposes the N -adic complexity is a reasonable
estimate for the size of an FCSR.

Let Srev = (sT−1, . . . , s0)
∞ be the periodic sequence formed by reversing each

period of S. Then it can be shown that the linear complexity of S is equal to that of
Srev using the fact that reversal commutes in polynomials (see [23, Lemma 19.2.1]).
But this is not true in case of N -adic complexity. We can define the reversal of
an integer with respect to its N -ary representation. Since carries in multiplications
go in the opposite directions, reversal does not preserve the N -adic complexity. So
given an N -ary sequence one can apply the rational approximation algorithm to find
an FCSR that generates the sequence or its reversal by running the algorithm on a
given segment of the sequence and its reversal. Thus a sequence S can be considered
cryptographically strong only if λN(S) and λN(Srev) are both high.

Definition 2.6. The symmetric N -adic complexity of a periodic N -ary sequence S

is defined as the minimum of the N -adic complexities of S and Srev.

Like the Berlekamp-Massey algorithm for LFSRs, there is an adaptive rational ap-
proximation algorithm that solves the register synthesis problem for FCSR sequences.
Say we have the first t = 2⌈λN(S)⌉ + 2 bits of a binary sequence S. The rational
approximation algorithm due to Klapper and Goresky [41] produces a pair of integers
f = (f1, f2) so that S = f1/f2 and max(|f1|, |f2|) is minimal over all such pairs of
integers in time O(t2 log t log log t). Once the rational representation is available, the
corresponding FCSR can be constructed [23, Procedure 7.3.1]. A rational approxima-
tion algorithm for N > 2 was given by Xu [90] and a non-adaptive algorithm based on
the Euclidean algorithm was given by Arnault et al. [4]. Because of these algorithms
sequences for cryptographic purposes should not only have high linear complexity but
also high N -adic complexity. In general, it is desirable to use sequences that have
high complexity corresponding to different classes of generators.

2.2.3 n-th Complexity Measures

Since LFSRs and FCSRs cannot generate ultimately nonperiodic sequences it is rea-
sonable to study the complexity of prefixes of those sequences. In practice if an
attacker can recover a large prefix of the key stream the system is considered vulner-
able. So every prefix of a sequence should have high complexity, since otherwise an
attacker can run register synthesis algorithms on finite prefixes.

Definition 2.7 ([76]). Let n be a positive integer and S = (s0, s1, . . .) be an arbitrary
sequence over Fq of length at least n. Then the n-th linear complexity Ln(S) is the
length of the shortest LFSR whose first n terms are s0, s1, ..., sn−1. The sequence
L1(S), L2(S), ... of integers is called the linear complexity profile of S.

The n-th linear complexity definition can be naturally extended to n-th N -adic
complexity λn

N(S).
Rueppel [76] suggested that a cryptographically strong sequence should have high

linear complexity and that the linear complexity profile should follow the line n/2

10
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“closely but irregularly”. For eventually nonperiodic sequences the linear complexity
Ln(S) (resp. N -adic complexity λn

N(S)) tends to infinity as n increases. So the
behavior of normalized linear (resp. N -adic) complexity Ln(S)/n (resp. λn

N(S)/n)
whose values are in the range [0, 1] is studied. Niederreiter [63] proved Rueppel’s
conjecture that for large n the normalized linear complexity is usually close to 1/2.

Proposition 2.1. With probability 1 we have

lim
n→∞

Ln(S)

n
=

1

2
.

Results on the sets of accumulation points of normalized linear and N -adic com-
plexities were obtained respectively by Dai et al. [11] and Klapper [39].

2.2.4 Error Complexity Measures

A stream cipher is insecure if all but a few symbols of the key stream can be extracted.
Hence for a cryptographically strong sequence, the complexity2 should not decrease
drastically if a few symbols are changed. If it did, an attacker could modify the known
prefix of the key stream and try to decrypt the result using the shift register synthesis
algorithms. If the resulting sequence differed from the actual key stream by only a
few symbols, the attacker could extract most of the message. This observation gives
rise to k-error linear complexity of sequences introduced by Martin and Stamp [80]
based on the earlier concepts of sphere complexity and weight complexity; see [12].
The notion of error complexity was naturally extended to N -adic complexity, too.

Definition 2.8. The k-error linear complexity Lk(S) of a periodic sequence S is the
smallest linear complexity that can be obtained by changing (substituting) k or fewer
symbols of a single period and repeating the period.

We similarly define the k-error N -adic complexity λN,k(S) of a periodic N -ary
sequence. We generalize this to the k-operation complexity of a periodic sequence S,
which is the smallest complexity value that can be obtained by performing k or fewer
operations on a single period and repeating the modified period. An operation is an
insertion, a substitution, or a deletion of a symbol. Likewise we define k-delete and
k-insert complexities. The error complexity measures can also be naturally extended
to finite sequences.

The minimum number of modifications (substitutions, insertions, or deletions)
that can be done to decrease the complexity is an important measure for the security
of a sequence. It measures the level of noise that a sequence can withstand without
compromising its security. For small k an attacker can potentially do an exhaustive
search over all k bit modifications of the known initial segment to find generators for
approximations of the given sequence.

2For the rest of the document when using the word “complexity” by itself we refer to either linear
complexity, N -adic complexity, or a complexity measure based on any other class of generators.

11
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Definition 2.9. Define minerr(S) as the minimum number of substitutions required
to modify a single period of S so that the linear complexity of the modified sequence
is less than that of the original sequence S.

The notions of mindel(S), minins(S), and minoper(S) are similarly defined for
deletions, insertions, and combinations of the three operations, respectively. The
corresponding N -adic analogs of these measures are defined along the same lines.

2.2.5 Joint Complexity Measures

Due to implementation ease in hardware, word based stream ciphers (see proposals
DRAGON, NLS, and SSS of the ECRYPT stream cipher project [14]) are gaining
prominence. The stability theory of word based stream ciphers requires the study of
multisequences and the associated joint linear complexity. An m-fold multisequence
S = (S0,S1, . . . ,Sm), m ≥ 1, over Fq is an m-tuple of sequences Si, i = 1, . . . ,m,
over Fq. For simplicity we assume that all the m streams have same length (finite or
infinite). For notational convenience we omit the dimension m from all the notation
for multisequences as it will be clear from the context.

Definition 2.10. The joint linear complexity L(S) of anm-fold multisequence S is the
length of the shortest LFSR that simultaneously generates its component sequences
Si, 1 ≤ i ≤ m.

In Definition 2.10 simultaneous generation means that the same LFSR, that is,
having the same connection polynomial, generates all the component sequences with
possibly different initial loadings. For a finite length m-fold multisequence S, the n-th
joint linear complexity Ln(S) is the length of the shortest LFSR that simultaneously
generates at least the first n terms of Si, 1 ≤ i ≤ m. Niederreiter and Wang [69]
proved the following result on the asymptotic behavior of joint linear complexity.

Proposition 2.2. Let S be an m-fold multisequence. With probability 1 we have

lim
n→∞

Ln(S)

n
=

m

m+ 1
.

Let T be a common period of the component sequences of a periodic m-fold
multisequence S = (S0,S1, . . . ,Sm). If fi(x) is the minimal connection polynomial of
Si we have L(S) = lcm (f1(x), . . . , fm(x)). If Si(x) is the polynomial corresponding to
a period of Si we have L(S) = T −deg(gcd(xT −1,S1(x), . . . ,Sm(x))). Next we define
another complexity measure for multisequences that is useful in further analysis.

Definition 2.11 ([58]). The Fq-linear complexity LFq(S) of a sequence S = (s0, s1, . . .)
over Fqm is the length of the shortest LFSR with taps from Fq that generates S.

We can see that LFq(S) ≥ L(S). For periodic sequences we have the following
special case when LFq(S) = L(S)

12
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Proposition 2.3 ([58]). Let T = pvn where p is the characteristic of Fq, v ≥ 0, and
gcd(n, p) = 1. Let l be the multiplicative order of q in the residue class modulo n.
Then the Fq-linear complexity and the conventional linear complexity of a T -periodic
sequence over Fqm are the same if and only if gcd(l,m) = 1.

Since the m-dimensional vector space Fm
q is isomorphic to the extension field Fqm

as a vector space over Fq, an m-fold multisequence can also be identified with a single
sequence over Fqm . From here on, if S is an m-fold multisequence over Fq, we denote
by S its corresponding single sequence over Fqm . We can see that L(S) = LFq(S).

Meidl et al. [60] defined three error joint linear complexity measures based on
substitutions for both finite length and periodic multisequences. If each component
sequence of S is arranged in a row of a matrix, each column can be identified with an
element in Fqm .

Definition 2.12. The joint k-operation Fq-linear complexity L
Fq ,oper

k (S) of a periodic
multisequence S is the minimum joint linear complexity obtained by performing at
most k column-operations on the multisequence. A column operation is a substitu-
tion, an insertion, or a deletion of an entire column and hence can affect up to m
symbols in the multisequence.

Again, the operations can be restricted to only of one type among insertions, dele-
tions, and substitutions. The conventional k-error linear complexity is also defined.

Definition 2.13. The joint k-error linear complexity Lk(S) of a periodic multise-
quence S is the minimum joint linear complexity obtained by substituting at most k
symbols among all the mT elements in a single period of S.

Since allowing insertions and deletions in each component sequence may result in
component sequences of different periods, we restrict the operations to substitutions
in Definition 2.13. We can also see that Lk(S) ≥ L

Fq ,oper

k (S).
For periodic N -ary multisequences we define joint N -adic complexity similar to

joint linear complexity.

Definition 2.14. Let S = (S1, . . . ,Sm) be an m-fold N -ary periodic multisequence of
period T . Then the joint N -adic complexity λN(S) is the logN of the smallest integer
q such that there exists an FCSR with connection number q that simultaneously
generates S1, . . . ,Sm.

Let −pi/qi, 1 ≤ i ≤ m, be the reduced rational representation of Si. Then we
have λN(S) = logN(lcm (q1, . . . , qm)).

2.3 Analysis of Sequence Complexity Measures

The motivation, definitions, and significance for LFSR and FCSR based sequence
complexity measures are presented in the previous section. While a few results are
already given, here we present a brief survey of some classical and recent results on
the subject.

13
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2.3.1 Problems on Sequence Complexity Measures

In this section we list a few problems pertaining to the complexity measures defined
in the previous section.

(i) Counting functions and expected values: Counting functions are expres-
sions for the number of sequences with a given (error) complexity value. They
enable us to have a better understanding of how various complexity values are
distributed. They are also used to compute expected values and variance, which
in turn give insights into the average level of security that can be expected
when using particular sequence families. Determining the counting function,
expected value, and variance of a complexity measure over sequences of a given
finite length or over all periodic sequences of a given period is thus an important
problem.

(ii) Complexity bounds: Often it is not easy to obtain exact counts. In such
cases obtaining good upper and lower bounds on a complexity measure, its
expected value, and its variance can also be helpful, especially if the bounds are
tight.

(iii) Asymptotic behavior: Determining the sets of accumulation points of val-
ues of normalized complexity for ultimately nonperiodic sequences is also use-
ful. The set of accumulation points aids in launching distinguishing attacks on
stream ciphers where a cryptanalyst tries to distinguish a key stream generated
by a stream cipher from a purely random sequence. So a sequence with the set
of accumulation points [0, 1] can be considered most random in this sense. Also,
suppose we know the set of accumulation points [B, 1 −B]. Then if a cryptan-
alyst observes that an initial segment of a sequence has normalized complexity
close to B, then the next symbol in the sequence is likely one that changes
the complexity so that the normalized complexity increases. Likewise, if the
initial segment has normalized complexity close to 1−B, then the next symbol
in the sequence is likely one that leaves the complexity unchanged so that the
normalized complexity decreases.

(iv) Shift register synthesis: Designing efficient algorithms to find the smallest
generator that outputs a sequence given its first few elements is very important
for cryptanalytic purposes. While this problem is solved for LFSRs and FCSRs,
it should be considered for all generators that are currently used or proposed.

(v) Sequence complexity computation: A slightly different problem is to de-
sign efficient algorithms to compute a complexity measure. This problem is
different from shift register synthesis in that it only computes the value of a
complexity measure and it is usually assumed that all of the sequence is given
as input.

(vi) Sequence construction: Constructing sequences with certain desired proper-
ties or classifying sequences with certain undesirable properties is an important
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problem. For cryptographic purposes we would like to construct families of
sequences with high complexity and error complexity values for measures asso-
ciated with different classes of generators.

The problems mentioned above can also be considered for special cases when they
are hard to solve in the general setting.

2.3.2 Results on Linear Complexity and N-adic Complexity

The first results on counting functions for linear complexity were obtained by Gus-
tavson when analyzing the time complexity of Berlekamp-Massey algorithm.

Proposition 2.4 ([25]). Let Nn(L) denote the total number of sequences over Fq

with nth linear complexity L. Then Nn(0) = 1 and for 1 ≤ L ≤ n,

Nn(L) = (q − 1)qmin(2L−1,2n−2L).

From Proposition 2.4 we have Nn(n/2) = (q − 1)qn−1, implying that most of the
length n finite sequences have linear complexity n/2.

Using Gustavson’s counting function, Meidl and Niederreiter [55] derived counting
functions for the number of periodic and eventually periodic sequences with a given
linear complexity.

Theorem 2.5. Let U(L) and P (L) denote, respectively, the number of eventually
periodic and purely periodic Fq sequences with linear complexity L. Then we have
P (0) = 1, U(0) = 0, and for L ≥ 1

P (L) =
q − 1

q + 1
(q2L − 1)

and

U(L) =
q − 1

q + 1
(q2L−1 + 1).

Using Theorem 2.5 Meidl and Niederreiter [55] derived counting functions for the
n-th k-error linear complexity for several values of k and obtained bounds on its
expected value.

Theorem 2.6. Let Nn
k (L) denote the number of Fq sequences of length n with k-error

linear complexity L. Let P (L) be as in Theorem 2.5. Then

(i) Nn
k (0) =

∑k

t=0

(
n

t

)
(q − 1)t, for 1 ≤ k ≤ n.

(ii) Nn
k (1) = (q − 1)2

∑k

t=0

(
n

t

)
(q − 1)t +

(
n−2

k

)
(q − 1)k+1, for 1 ≤ k < (n− 1)/4.

(iii) Nn
k (n) = 0, for 1 ≤ k ≤ n.

(iv) If L ≥ 1, k ≥ 0, and n ≥ (4k + 3)L then

Nn
k (L) = P (L)

k∑

r=0

(
n

r

)
(q − 1)r + (q − 1)k+1

L∑

t=1

(
n− t

k

)
qt−1P (L− t).
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Niederreiter [64] extended Gustavson’s result and gave a partial counting function
for multisequences.

Proposition 2.7. Let Nn,(m)(L) denote the number of length n multisequences with
joint linear complexity L. Then for m ≥ 1 and n ≥ 2 we have

Nn,(m)(L) = (qm − 1)q(m+1)L−1, for 1 ≤ L ≤
n

2
.

An expression for the counting function when n/2 < L ≤ n in Proposition 2.7
was given by Wang and Niederreiter [85] and at the time of this writing, closed forms
are only known for m = 2, 3 [85, 86].

Meidl and Niederreiter [56, 58] derived counting functions and expected values for
the linear and the k-error linear complexity of periodic sequences and multisequences
with certain prime periods using discrete Fourier transforms (DFTs) of sequences.
Here the number of periodic sequences with period T and a given linear complex-
ity will be less than or equal to that count for finite strings of length T . This is
because the restriction that T is also the period of the sequence cuts down some of
the choices which would otherwise be counted. Here we only state the important
relationship between DFT and linear complexity. For the actual counting functions
and further results on the topic we suggest the reader to refer to papers by Meidl and
Niederreiter [56, 57, 58, 60, 63].

Definition 2.15. Let T be a positive integer with gcd(T, q) = 1 and let α be a
primitive T -th root of unity in some finite extension of Fq. Then the DFT of a
given T -tuple ST = [s0, s1, . . . , sT−1] ∈ FT

q , is the tuple AT = [a0, a1, . . . , aT−1] where

aj =
∑T−1

i=0 siα
ij, for j = 0, 1, . . . , T − 1.

We note that the DFT transformation is one-one and has an easily computed
inverse image. The next theorem is a well known result stating the connection between
the linear complexity of a sequence and its DFT.

Blahut’s Theorem ([6, 49]). Let gcd(T, q) = 1. Then the linear complexity of a
T -periodic sequence S = (s0, s1, . . . , sT−1)

∞ over Fq is equal to the Hamming weight
of the DFT of [s0, s1, . . . , sT−1].

Goresky et al. [24] presented an arithmetic analog of Blahut’s theorem. Their
result, unlike Blahut’s theorem, only gives an upper bound on the 2-adic complexity
λ2(S) in terms of the number of nonzero classical Fourier coefficients of S.

Niederreiter et al. [59, 67, 65] and Hu et al. [29] have also constructed periodic
sequences with large linear complexity and large k-error linear complexity. Niederre-
iter and Venkateswarlu presented similar results for periodic multisequences [68]. For
further results on linear complexity and related measures please see the recent survey
by Niederreiter [64].

Counting functions for N -adic complexity do not exist in the literature and are
comparatively difficult to derive because certain nice properties of polynomials over
finite fields do not apply to N -adic representations of integers. The average behavior
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of N -adic complexity for periodic sequences was investigated first by Hu and Feng [30]
for N = 2. Later Goresky and Klapper [23] generalized for any N and showed
that the expected N -adic complexity of periodic sequences of period T is in T −
O(log(T )). Hu et al. [31] also computed the expected value of joint N -adic complexity
of periodic sequences for N = 2. The expected value of k-error N -adic complexity
is not determined yet. The N -adic analogs for most of the results on k-error linear
complexity are not determined. The joint N -adic complexity of multisequences also
remains a fairly unexplored concept.

Copyright c© Ramakanth Kavuluru, 2009.
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3 Lower Bounds on Error Complexity Measures

We defined error linear complexity and N -adic complexity measures in Section 2.2.4
and noted that they should be as large as possible for cryptographic purposes. Several
results for the k-error linear complexity of sequences were discussed in Section 2.3.2.
In those results we recall that the errors are only substitutions. Linear complexities
of periodic sequences obtained by inserting and deleting few symbols were also stud-
ied [82, 83]. However, similar results for the N -adic complexity do not exist in the
literature.

For a T -periodic sequence S, by Ŝ denote any periodic sequence obtained by
performing up to k modifications in one period of S and periodically repeating the
modified period.

Jiang, Dai, and Imamura [32] gave a proof that the linear complexity L(Ŝ) ≥
T/k − L(S) in each of the following three separate cases:

(i) at most k substitutions are performed;

(ii) at most k insertions are performed; or

(iii) at most k deletions are performed.

Their analysis did not allow any combination of these operations.
From Section 2.2.4 recall that the k-operation linear complexity Loper

k (S) of a
periodic sequence S is the smallest linear complexity obtained by performing any
combination of up to k substitutions, insertions, and deletions in a single period of
S and then repeating the period. The k-operation N -adic complexity λoper

N,k (S) is
similarly defined for a N -ary sequence S.

In this chapter

(i) We show Jiang, Dai, and Imamura’s bound should be

L(Ŝ) ≥ min

(
L(S),

T

k
− L(S)

)
.

(ii) We prove that this bound holds for any combination of up to k substitutions,
insertions, and deletions. That is, we do not restrict all the operations to be
of the same type. Thus we derive a lower bound on the k-operation linear
complexity of a periodic sequence.

(iii) We derive similar bounds for the joint linear complexity of periodic multise-
quences.

(iv) Using a similar approach we derive a lower bound on k-operation N -adic com-
plexity of N -ary sequences,

λN(Ŝ) > min

(
λN(S),

T

k
− λN(S) − 2 − logN

(
2

N − 1

))
.
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A portion of these results were presented at INDOCRYPT 2007 [37] and full results
appear in the journal Cryptography and Communications [38].

3.1 Notation for k-Operation Modification

In this section we state an auxiliary result and describe the k-operation modification
of a sequence. We establish the notation we use in the later sections to obtain the
lower bounds.

Let Fq denote the finite field with q elements, where q = pr, r ≥ 1, and p is
prime. Let S = (s0, s1, . . . , sT−1)

∞ be a T -periodic sequence over Fq with period
(s0, . . . , sT−1). Let S(x) = s0 + s1x+ · · ·+ sT−1x

T−1 be the polynomial corresponding
to sequence S. Recall that the sequence S can be represented as the power series

∑

i≥0

six
i =

S(x)

1 − xT
=
g(x)

f(x)
, gcd(g(x), f(x)) = 1, deg(g(x)) < deg(f(x)). (3.1)

Then the linear complexity of S is

L(S) = deg

(
1 − xT

gcd(S(x), 1 − xT )

)
= deg(f(x)). (3.2)

We can see that
L(S) ≤ T.

In later sections we use the following lemma to derive bounds for the linear complexity
after a k-operation modification of a single period. The proof is due to Jiang et al. [32].

Lemma 3.1. Let C(x), D(x) ∈ Fq[x] with deg(D(x)) < deg(C(x)) and C(x) 6= 0.
Define a periodic sequence A = (a0, a1, . . .) over Fq by

∑

i≥0

aix
i =

D(x)

C(x)
.

Define another sequence Ã = (ã0, ã1, . . .) by

∑

i≥0

ãix
i =

[H(x)D(x)] mod C(x)

C(x)
,

where H(x) ∈ Fq[x]. Then

L(Ã) ≤ L(A). (3.3)

If gcd(C(x), H(x)) = 1, then equality holds in equation (3.3).

Let S−r = (sT−r, . . . , sT−1, s0, . . . , sT−r−1)
∞ denote the sequence obtained by shift-

ing one period of S = (s0, . . . , sT−1)
∞ to the right cyclically by r symbols and repeat-

ing this modified period. It is well known that

L(S) = L(S−r), 1 ≤ r ≤ T − 1. (3.4)

19



www.manaraa.com

Let S be the original sequence of period T and Ŝ be the sequence obtained after
k operations are performed on a single period of S. Say there are kS substitutions,
kD deletions, and kI insertions.

We do not allow the combination when kD = T , kI = 0, and kS = 0 as
this would amount to deleting all symbols resulting in an empty sequence. Let
S,D, I ⊂ {0, . . . , T − 1} be sets that denote the positions of substitutions, dele-
tions, and insertions respectively. Substitutions and deletions are performed on the
elements with indices in sets S and D respectively. Insertions occur before elements
with indices in the set I. More than one element can be inserted before an ele-
ment with index in I and there are |I| = kL insertion positions. Thus we have
|S| = kS, |D| = kD, |I| = kL,

k = kS + kD + kI , and kL ≤ kI . (3.5)

If there are a deletion and a substitution at the same place we can remove the sub-
stitution and obtain the same modified sequence. Thus we can replace our list of
k modifications by a list of l ≤ k modifications with no deletions and substitutions
at the same place. Similarly we can replace an insertion and a deletion at the same
position by a substitution of the element at that position with the element to be
inserted. That is, we may assume that

D ∩ S = D ∩ I = ∅. (3.6)

However, an insertion and a substitution can occur at the same position. Hence if k′

is the cardinality of S ∪D ∪ I, from equations (3.5) and (3.6) we have

k′ = |S ∪D ∪ I| ≤ kS + kD + kL ≤ k.

Let t1, . . . , tk′ be the list of the distinct elements of S ∪D ∪ I so that

t1 < t2 < · · · < tk′ , k′ = |S ∪D ∪ I|.

From equation (3.4), by replacing S by a cyclic shift S−r, 0 ≤ r ≤ T − 1, we can
make t1 = 0 and

T − tk′ = max(t2, t3 − t2, . . . , T − tk′) ≥
T

k′
. (3.7)

So from equation (3.7) we have

tk′ ≤
(k′ − 1)T

k′
≤

(k − 1)T

k
. (3.8)

3.2 Error Linear Complexity Bounds

With the notation established in the previous section, we obtain a lower bound on
the linear complexity of the modified sequence. We ultimately want a bound that
applies when up to k modifications are made. We first prove a lower bound assuming
exactly k modifications.
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Theorem 3.2. Let S be a sequence over Fq of period T . Let Ŝ be a sequence obtained
after any combination of k substitutions, insertions, and deletions is performed on a
single period of S and repeated periodically. Then

(i) L(Ŝ) ≥ min(L(S), T/k − L(S)) if the number of deletions is greater than or
equal to the number of insertions.

(ii) L(Ŝ) ≥ min(L(S), (T + 1)/k − L(S)) if the number of deletions is less than the
number of insertions.

Proof. Let Ŝ(x) = ŝ0 + ŝ1x + · · · + ŝT+kI−kD−1x
T+kI−kD−1 be the polynomial corre-

sponding to the new sequence Ŝ = (ŝ0, . . . , ŝT+kI−kD−1)
∞ as in equation (3.1). The

generating function of the new sequence is

∑

i≥0

ŝix
i =

Ŝ(x)

1 − xT+kI−kD
. (3.9)

We consider two cases based on whether the number of insertions is greater than the
number of deletions.

Case 1: kI ≤ kD

Let
B(x) = xkD−kI Ŝ(x) − S(x). (3.10)

Since tk′ is the position where the last operation is made, the last T−1−tk′ coefficients
are the same in xkD−kI Ŝ(x) and S(x). Thus

degB(x) ≤ (T − 1) − (T − 1 − tk′) = tk′ . (3.11)

From equations (3.1), (3.9), and (3.10) we have

∑

i≥0

ŝix
i =

Ŝ(x)

1 − xT+kI−kD

=
xkI−kD(S(x) +B(x))

1 − xT+kI−kD

=
(g(x)(1 − xT ))/f(x) +B(x)

xkD−kI − xT

=
g(x)(1 − xT ) + f(x)B(x)

f(x)(xkD−kI − xT )
.

Next we can apply Lemma 3.1 with A = Ŝ and H(x) = f(x). Hence Ã is the
sequence represented by

∑

i≥0

ãix
i =

[f(x)(g(x)(1 − xT ) + f(x)B(x))] mod (f(x)(xkD−kI − xT ))

f(x)(xkD−kI − xT )

=
[g(x)(1 − xkD−kI ) + f(x)B(x)] mod (xkD−kI − xT )

xkD−kI − xT
.

(3.12)
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Then L(Ã) ≤ L(Ŝ).
Since kD ≤ tk′ + 1, from equations (3.1), (3.2), and (3.11), we have

deg(g(x)(1 − xkD−kI ) + f(x)B(x)) ≤ L(S) + tk′ . (3.13)

We have the following two subcases based on the numerator in equation (3.12).
Case 1a: [g(x)(1 − xkD−kI ) + f(x)B(x)] 6≡ 0 mod (xkD−kI − xT )
From Lemma 3.1 and equations (3.8), (3.12), and (3.13), we have

L(Ŝ) ≥ L(Ã)

≥ T − deg(g(x)(1 − xkD−kI ) + f(x)B(x))

≥ T − (L(S) + tk′)

≥ T − L(S) −
(k − 1)T

k
.

Thus we have

L(Ŝ) ≥
T

k
− L(S). (3.14)

Case 1b: [g(x)(1 − xkD−kI ) + f(x)B(x)] ≡ 0 mod (xkD−kI − xT )
If L(S) ≥ T/k, then the right hand side of equation (3.14) is at most 0 and so the
result is trivial. Hence we may assume that

L(S) < T/k. (3.15)

Let
g(x)(1 − xkD−kI ) + f(x)B(x) = l(x)(xkD−kI − xT ) (3.16)

for some l(x) ∈ Fq[x]. From equations (3.13) and (3.8) we have

deg(l(x)(xkD−kI − xT )) ≤ L(S) +
(k − 1)T

k
.

So from equation (3.15) we get deg(l(x)) ≤ L(S) − T/k < 0. From equation (3.16)
this implies that g(x)(1 − xkD−kI ) + f(x)B(x) = 0. Hence we have

B(x) =
g(x)(xkD−kI − 1)

f(x)
. (3.17)

From equations (3.1), (3.9), (3.10), and (3.17) we have

∑

i≥0

ŝix
i =

Ŝ(x)

1 − xT+kI−kD

=
B(x) + S(x)

xkD−kI − xT

=
1

xkD−kI − xT

(
g(x)(xkD−kI − 1)

f(x)
+
g(x)(1 − xT )

f(x)

)

=
g(x)

f(x)

=
∑

i≥0

six
i.

(3.18)
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From equations (3.14) and (3.18) Case 1 of the theorem is proved.

Case 2: kI > kD

We use the result of Case 1 by switching the roles of S and Ŝ. Let the original se-
quence be R = Ŝ. Then the new sequence R̂ = S is formed by inserting k′I = kD

symbols, deleting k′D = kI , and substituting k′S = kS symbols. So k′D > k′I . The

periods of R and R̂ are T + kI − kD and T respectively. Because R̂ is formed by
modifying R by deleting more symbols than those inserted, from equation (3.14) we

have L(R̂) ≥ min(L(R), (T + kI − kD)/k − L(R)).
If min(L(R), (T+kI−kD)/k−L(R)) = L(R) and L(R) 6= (T+kI−kD)/k−L(R)

we must have been in Case 1b for R. We also have

T + kI − kD

k
− L(R) > L(R) ≥ 0. (3.19)

From equation (3.19) and the hypothesis of Case 1b we have R = R̂.
If min(L(R), (T + kI − kD)/k − L(R)) = (T + kI − kD)/k − L(R) we have

L(R̂) ≥
T + kI − kD

k
− L(R)

≥
T + 1

k
− L(R).

This implies L(R) ≥ (T + 1)/k − L(R̂). That is,

L(Ŝ) ≥
T + 1

k
− L(S).

Thus Case 2 is proved.

Example 3.1. For a simple example of Case 1b, let T = 10, the sequence S =
(0101010101)∞, and k = 2. Hence T/k − L(S) = 3, which is not a lower bound
for the linear complexity of the modified sequence because we can delete any two
consecutive symbols to have a sequence with linear complexity 2. Similarly we can
insert two symbols and use a combination of an insertion and a deletion to obtain
the same linear complexity as that of the original sequence. This shows that we must
include L(S) in our lower bound. It is this term that was missing from Jiang et al.’s
lower bound [32]. Their analysis does not consider the possibility of Case 1b and
hence the missing term.

Remark 3.1. We note that we can shift the sequence by one position with an insertion
and a deletion by deleting the last symbol and inserting it at the beginning of the
period. Hence we can leave any sequence as is up to a shift using a k-operation
modification, if k is even. Even when k ≥ 3 is odd, we can shift the sequence by
(k− 3)/2 positions using (k− 3)/2 pairs of insertion and deletion operations. For the
remaining 3 operations we look for an ab in a single period where a, b ∈ Fq such that
a 6= b. We insert an a before a, substitute the original a by b and delete the b to leave
the sequence as is up to a shift. The inclusion of L(S) in the bound in Theorem 3.2
is also needed in view of this remark.
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Corollary 3.3. Let S be a sequence over Fq of period T . Then the k-operation linear
complexity satisfies

(i) Loper
k (S) ≥ min(L(S), T/k − L(S)) if the number of deletions is greater than or

equal to the number of insertions.

(ii) Loper
k (S) ≥ min(L(S), (T + 1)/k − L(S)) if the number of deletions is less than

the number of insertions.

Proof. We note that the lower bound established in Theorem 3.2 is monotonically
nonincreasing in k. Thus if we make l ≤ k modifications, the bound for exactly k
modifications still applies.

Corollary 3.4. Let S be a sequence over Fq of period T . Suppose there is an r ∈ Fq

that occurs t > T/2 times in a single period of S.

(i) If r = 0, then L(S) ≤ T/(2(T − t)) or L(S) ≥ T/(T − t).

(ii) If r 6= 0, then L(S) ≤ T/(2(T − t)) or L(S) ≥ T/(T − t) − 1.

Proof. Assume L(S) > T/(2(T − t)). This implies that

L(S) >
T

T − t
− L(S). (3.20)

Let Ŝ be a sequence obtained by performing T − t operations on S and assume that
the number of deletions is greater than or equal to the number of insertions. From
equation (3.20) and Corollary 3.3(i) we have

L(Ŝ) ≥
T

T − t
− L(S). (3.21)

If r = 0, by deleting or substituting a 0 for each nonzero symbol we obtain the all-
0 sequence, which has linear complexity 0. So by equation (3.21) we have L(S) ≥
T/(T −t). So we have L(S) ≤ T/(2(T −t)) or L(S) ≥ T/(T −t). If r 6= 0, by deleting
or substituting an r for each symbol that is not an r we obtain the all-r sequence,
which has linear complexity 1. So by equation (3.21) we have L(S) ≥ T/(T − t) − 1.
So we have L(S) ≤ T/(2(T − t)) or L(S) ≥ T/(T − t) − 1.

Remark 3.2. The results of Corollary 3.4 hold for any r ∈ Fq and the corresponding
t as defined in Corollary 3.4 even if t ≤ T/2. But the results are useful only when
t > T/2 and there can only be one element, if any, that satisfies this condition.

Here we present a result by Kurosawa et al., which we need for our next result.

Definition 3.1. For a nonnegative integer i =
∑d−1

j=0 ijp
j with ij ∈ {0, . . . , p − 1},

define

Prod(i) =
d−1∏

j=0

(ij + 1).
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Lemma 3.5 ([43]). Let t0 denote the number of occurrences of 0 in a single period
of a T -periodic sequence S over Fq. Let T = pn for some n ∈ Z+ where p is the
characteristic of Fq. Then the minimum number of substitutions per period required
to lower the linear complexity of S, minerr(S), satisfies the following.

(i) minerr(S) = Prod(T − L(S)).

(ii) minerr(S) = T − t0 if and only if the minimum linear complexity achievable by
performing up to minerr(S) substitutions on S is 0.

(iii) If q = 2, minerr(S) < T − minerr(S) = T − t0 if and only if the minimum
linear complexity achievable by performing up to minerr(S) substitutions on S

is 1.

Here we obtain a lower bound on the minimum number of operations required to
obtain a sequence with linear complexity less than the original sequence without any
restrictions on the period. An operation is an insertion, a deletion, or a substitution.

Corollary 3.6. Let S be a not-all-zero sequence over Fq. The minimum number of
operations minoper(S) per period required to lower its linear complexity of S satisfies
the following.

(i) minoper(S) > T/(2L(S)).

(ii) If minoper(S) = T − t0, where t0 is the number of occurrences of 0 in a single
period of S, then

minoper(S) ≥
T

L(S)
.

(iii) If T = pn for some n ∈ Z+ where p is the characteristic of Fq, then

T

2L(S)
< minoper(S) ≤ Prod(T − L(S)).

Proof. Let S and Ŝ be sequences of period T as in Corollary 3.3. After performing the
necessary k = minoper(S) operations we have L(S) > L(Ŝ). So from Corollary 3.3(i,
ii) we have

L(S) > L(Ŝ)

≥ min(L(S), T/k − L(S)).
(3.22)

From equation (3.22) we have min(L(S), T/k − L(S)) = T/k − L(S). Hence we have
L(S) > T/k − L(S). That is, L(S) > T/2k, which implies the bound in (i). Using
Remark 3.2 and Corollary 3.4(i), (ii) follows from (i). Since minoper(S) ≤ minerr(S),
(iii) follows from (i) and Lemma 3.5(i).
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3.3 Examples

In this section we discuss the tightness of the bounds established in Theorem 3.2.
Because the derivation in Theorem 3.2 does not use information about the positions
and relative orders of operations, it is reasonable to investigate the tightness of those
bounds.

We give non-trivial examples where the lower bounds are achieved when the least
period is used in calculating them. Let V2 denote the set of odd primes v such that
2 is a primitive root modulo v2. We need the following results due to Meidl [52] and
Han et al. [26].

Lemma 3.7 ([52]). Let v ∈ V2 and λ be a nonnegative integer of the form

λ = ǫ+ (v − 1)
∑

r∈R

vr, where R ⊆ {0, . . . , n− 1} and ǫ ∈ {0, 1}.

If λ ≥ (v − 1)vn−1, then there exists a binary sequence with least period vn such that
the linear complexity is λ and the 1-error linear complexity is vn − λ.

Lemma 3.8 ([26]). For any v ∈ V2 and 0 ≤ k ≤ T , the linear complexity and hence
the k-error linear complexity of a vn-periodic binary sequence belongs to

{vn − 1, vn} ∪
n−1⋃

r=0

Ir,

where Ir = {l ∈ Z : vn − vr+1 ≤ l ≤ vn − (v − 1)vr}.

We count the number of values greater than or equal to (v−1)vn−1 that fall in the
range specified in Lemma 3.8. From Lemma 3.7 this count gives the following result
on the number of values of linear complexities for which the lower bound is achieved
for vn-periodic binary sequences.

Lemma 3.9. For any v ∈ V2, the number of nonnegative integers λ such that there
is a binary sequence with least period vn and linear complexity λ that achieves the
lower bound in Theorem 3.2 for k = 1 is

vn−1 − 1

v − 1
+ n+ 1.

Next we give an infinite family of binary sequences where the lower bound is met
for a single deletion and a single insertion.

Example 3.2. For a prime n, consider a 2n-periodic binary sequence S with linear
complexity

c = 2 + tn, where
2n − 2

2n
≤ t <

2n − 2

n
. (3.23)

Also, pick S so that a period (or a shift of a period) corresponds to the polynomial
S(x) = x(1−x)2n−cr1(x)r2(x) · · · rt(x), where ri(x), 1 ≤ i ≤ t, are distinct irreducible
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polynomials of degree n. We note that c > 2n−1 and hence S has least period 2n.
Since x2n

−x is the product of all monic irreducible polynomials whose degrees divide
n, the number of irreducible polynomials of prime degree n in F2[x] is (2n − 2)/n.

Now deleting the 0 at the beginning of each period results in Ŝ with period 2n − 1
corresponding to the polynomial Ŝ(x) = (1 − x)2n−cr1(x) · · · rt(x). From equation
(3.23) we have c < 2n. Hence

L(Ŝ) = deg

(
1 − x2n−1

gcd(1 − x2n−1, Ŝ(x))

)
= 2n − 1 − (nt+ 1) = 2n − c,

which achieves the lower bound in Theorem 3.2. We can also find examples for one
symbol insertion by choosing c < 2n−1 in equation (3.23) and switching the roles of

S and Ŝ.

Remark 3.3. For a 2n-periodic binary sequence S, minerr(S) = 1 if and only if
L(S) = 2n. From Example 3.2 we note that there exist sequences with minoper(S) =
1 even when 2n−1 < L(S) < 2n. Hence these sequences serve as examples where
minoper(S) < minerr(S) and also achieve the lower bound in Corollary 3.6(i).

Next we use a different approach to give examples where the least period of the
sequence over Fq is used and where a set of k substitutions yields the lower bound.
With this approach we can find examples where the lower bound is achieved for
nonbinary periodic sequences where the period is not necessarily a power of the field
characteristic. The following result is needed for the next example. If S and R are two
periodic sequences with the same period, let dH(S,R) denote the Hamming distance
between a period of S and a period of R.

Lemma 3.10. Let S be a sequence with least period T and minimal polynomial f(x) ∈
Fq[x] of degree n. Let S(x) be the polynomial corresponding to a single period as
in equation (3.1). Then the sequence S represented by S(xl), l ∈ Z+, has linear
complexity nl and least period T l. Also, if R is a different sequence of period T and
R′ is the sequence represented by R(xl), then dH(S,R) = dH(S′,R′).

Proof. Let gcd(1 − xT ,S(x)) = m(x) and S(x) = g(x)m(x). From equation (3.2),
1 − xT = m(x)f(x) and gcd(f(x), g(x)) = 1. So gcd(f(xl), g(xl)) = 1, which implies
that gcd(1 − xT l,S(xl)) = m(xl). So

L(S′) = deg

(
1 − xT l

gcd(1 − xT l,S(xl))

)
= deg

(
f(xl) ·m(xl)

m(xl)

)
= nl.

We note that a single period of sequence S′ corresponding to S(xl) can be obtained
by placing l−1 zeroes after each element in one period of S. Hence the least period of
S′ is T l if T is the least period of S. For the same reason, the single period Hamming
distance dH(S,R) = dH(S′,R′) where R is a sequence with period T (which may not
be its least period) and R′ is the sequence corresponding to R(xl).
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Example 3.3. Let k = 1, q = 2, and T = 3. We have 1 − x3 = (1 + x)(1 + x + x2),
the factorization of 1 − x3 into irreducible factors in F2[x]. Consider the sequences S

and R of least periods 3 and 1 respectively, corresponding to

S(x) =
1 − x3

1 + x+ x2
= 1 + x,

R(x) =
1 − x3

1 + x
= 1 + x+ x2.

We have S = (110)∞ and R = (111)∞. Here the Hamming distance of one period
is dH(S,R) = 1. It is straightforward to check that L(S) = 2 and L(R) = 1.
From Lemma 3.10, considering S′, R′ corresponding to S(xl), R(xl), l = 1, 2, ..., we
have L(S′) = 2l and L(R′) = l. Also, the least period of S′ is 3l and the single
period Hamming distance is dH(S′,R′) = 1. The lower bound from Theorem 3.2 is
(3l)/1 − L(S′) = 3l − 2l = l. This can be achieved by considering R′, which can be
obtained by one modification in a single period of S′. Also, note that S′ achieves the
lower bound in Corollary 3.6(i) since T/(2L(S′)) = 3l/(4l) = 3/4 and dH(S′,R′) = 1.

Example 3.4. Let k = 2, q = 5, and T = 6. We have 1−x6 = 4(4+x)(1+x)(1+x+
x2)(1 + 4x+x2), the factorization of 1−x6 into irreducible factors in F5[x]. Consider
the sequences S and R of least periods 6 and 2 respectively, corresponding to

S(x) =
(1 − x6)(2 + x)

1 + 4x+ x2
= 2 + 3x+ x2 + 3x3 + 2x4 + 4x5,

R(x) =
2(1 − x6)

1 + x
= 2 + 3x+ 2x2 + 3x3 + 2x4 + 3x5.

We have S = (231324)∞ and R = (232323)∞. Here the Hamming distance of one
period is dH(S,R) = 2. It is straightforward to check that L(S) = 2 and L(R) = 1.
From Lemma 3.10, considering S′, R′ corresponding to S(xl), R(xl), l = 1, 2, ..., we
have L(S′) = 2l and L(R′) = l. Also, the least period of S′ is 6l and the single
period Hamming distance is dH(S′,R′) = 2. The lower bound from Theorem 3.2 is
(6l)/2 − L(S′) = 3l − 2l = l. This can be achieved by considering R′, which can be
obtained by two modifications in a single period of S′. Also, note that S′ achieves the
lower bound in Corollary 3.6(i) since T/(2L(S′)) = 6l/(4l) = 3/2 and dH(S′,R′) = 2.

3.4 Joint Error Linear Complexity Bounds

In this section we show that the bounds established in Corollary 3.3 also apply for
periodic multisequences over Fq.

Let S = (S1, . . . ,Sm) denote a periodic multisequence of period T consisting of m
parallel streams of sequences Si = (si

0, s
i
1, . . .), 1 ≤ j ≤ m, each of period T . Recall

that an m-fold multisequence S can be treated as a single sequence S over Fqm and
the Fq-linear complexity LFq(S) of S is equal to the joint linear complexity L(S) of
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S. We also recall that LFq(S) is greater than or equal to the conventional linear
complexity L(S). From these observations we have

L(S) = LFq(S) ≥ L(S), (3.24)

which leads to the following result.

Theorem 3.11. Let S be an m-fold multisequence over Fq of period T . Then we have

(i) Lk(S) ≥ L
Fq ,oper

k (S) ≥ min(L(S), T/k−L(S)) if the number of column deletions
is greater than or equal to the number of column insertions.

(ii) Lk(S) ≥ L
Fq ,oper

k (S) ≥ min(L(S), (T + 1)/k − L(S)) if the number of column
deletions is less than the number of column insertions.

Proof. Let S be the sequence over Fqm corresponding to the multisequence S over Fq

and let Loper
k (S) denote the usual k-operation linear complexity for a single sequence

over Fqm . From Corollary 3.3(i) we have

Loper
k (S) ≥ min

(
L(S),

T

k
− L(S)

)
,

if the number of deletions is greater than or equal to the number of insertions. From
equation (3.24) we have L

Fq ,oper

k (S) ≥ Loper
k (S). Hence if min(L(S), T/k − L(S)) =

T/k − L(S), then

L
Fq ,oper

k (S) ≥ Loper
k (S)

≥
T

k
− L(S)

≥
T

k
− L(S).

From Definitions 2.13 and 2.12 we know Loper
k (S) ≥ L

Fq ,oper

k (S). Thus Case (i) is
proved. If min(L(S), T/k − L(S)) = L(S), from Case 2 of Theorem 3.2 we know
that the modified sequence must be the same as the original sequence. Thus the first
statement of this theorem is proved. The second statement follows using a similar
argument as above.

We have the following result when we perform exactly k substitutions.

Corollary 3.12. Let S be an m-fold multisequence over Fq of period T and Ŝ be a
sequence obtained by performing exactly k substitutions among all mT elements in
a single period of S. If l is the number of component sequences with at least one
substitution, then we have

L(Ŝ) ≥ min

(
L(S),

T

k − l + 1
− L(S)

)
.
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Proof. Consider the arrangement of S in a matrix of order m× T , where each row is
a period of a component sequence and each column can be identified with an element
in Fqm . We can see that the joint linear complexity will not change if each of the
component sequences is cyclically shifted. Thus all of the l component sequences
can be shifted so that there is at least one column with l substitutions. As a result,
the single sequence S over Fqm and the corresponding single sequence obtained by
performing up to k substitutions in the multisequence S differ in at most k − l + 1
positions. So the result follows from Theorem 3.11.

From equation (3.24) and Theorem 3.11, using a similar argument as in Corol-
lary 3.4, we obtain the following result.

Corollary 3.13. Let S be an m-fold multisequence over Fq of period T and let S be
its corresponding single sequence over Fqm. Suppose there is an r ∈ Fqm that occurs
t > T/2 times in a single period of S.

(i) If r = 0, then L(S) ≤ T/2(T − t) or L(S) ≥ T/(T − t).

(ii) If r 6= 0, then L(S) ≤ T/2(T − t) or L(S) ≥ T/(T − t) − 1.

Next we extend the bounds obtained for minoper(S) for single sequences to mul-

tisequences. Let minoperFq(S) denote the minimum value of k so that L
Fq ,oper

k (S) <
L(S) and let minerr(S) denote the minimum value of k so that Lk(S) < L(S).

Lemma 3.14. Let S be an m-fold multisequence over Fq of period T = pn. Set the
integer c = max{L(Sj) : 1 ≤ j ≤ m} and l = |{j : L(Sj) = c, 1 ≤ j ≤ m}|. Then

(i) minerr(S) = l · Prod(T − L(S)).

(ii) minoperFq(S) ≤ l · Prod(T − L(S)) with equality holding when l = 1.

Proof. If T = pn, the minimal connection polynomial of a sequence with linear com-
plexity λ is (1 − x)λ. Since the joint minimal connection polynomial is the LCM of
the minimal connection polynomials of all the component sequences, the joint linear
complexity is c. If there are l sequences with linear complexity c, to lower the joint
linear complexity, the linear complexity of all of the l sequences must be lowered due
to the special form of connection polynomials. Hence (i) follows. By shifting the l
component sequences, k symbol substitutions among mT elements can be affected
using k − l + 1 column substitutions when S is arranged in the form of a matrix of
order m × T . Using this observation and the inequality minoperFq(S) ≤ minerr(S),
(ii) follows from (i).

From Theorem 3.11 and Lemma 3.14, using a similar argument as in Corollary 3.6
we have the following result.

Corollary 3.15. Let S be an m-fold multisequence over Fq of period T . We have

(i) minerr(S) ≥ minoperFq(S) > T/(2L(S)).
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(ii) If T = pn for some n ∈ Z+, then

T

2L(S)
< minoperFq(S) ≤ l · Prod(T − L(S)),

where l is as in Lemma 3.14.

3.5 Error N-adic Complexity Lower Bounds

In this section we derive non-trivial lower bounds on N -adic complexity of periodic
sequences using the same approach as for linear complexity. It is interesting to note
that the bounds we derive here in the N -adic case and the bounds derived in the
linear complexity case differ only by a small constant even though the derivation in
the former case involves additions with carry.

Let S = (s0, . . . , sT−1)
∞ be a T -periodic sequence over {0, . . . , N − 1} for any

N ≥ 2. Let S(N) = s0 + s1N + · · · + sT−1N
T−1 be the integer corresponding to

sequence S. Thus S(N) is an ordinary integer and s0, . . . , sT−1 are the coefficients in
its N -ary expansion. Recall that the sequence S can be represented as the N -adic
number

∑

i≥0

siN
i = −

S(N)

NT − 1
= −

p

q
, where gcd(p, q) = 1 and 0 ≤ p ≤ q. (3.25)

The N -adic complexity of S is

λN(S) = logN

(
NT − 1

gcd(S(N), NT − 1)

)
= logN(q).

We have
λN(S) ≤ logN(NT − 1).

We need the following lemma to derive bounds for N -adic complexity. The proof
is due to Hu and Feng [30].

Lemma 3.16. Let u and v be integers with 0 ≤ u ≤ v and v 6= 0. Let h be a nonzero
integer and ((uh) mod v)/v = u′/v′ where (uh) mod v means the reduced residue of
uh modulo v, and 0 ≤ u′ ≤ v′, v′ 6= 0. Then

v′

gcd(u′, v′)
≤

v

gcd(u, v)
. (3.26)

The equality in equation (3.26) holds if and only if

gcd (h, v/ gcd(u, v)) = 1.

From Lemma 3.1 it is straightforward to show that

λN(S) = λN(S−r), 1 ≤ r ≤ T − 1.

We use the notation established for Theorem 3.2 in Section 3.1.
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Theorem 3.17. Let S be a sequence over {0, . . . , N − 1} of period T and let Ŝ be a
sequence obtained after any combination of k substitutions, insertions, and deletions
is performed on a single period of S and repeated periodically. Then

(1) λN(Ŝ) > min(λN(S), T/k − λN(S) − 2 − logN(2/(N − 1))) if the number of
deletions is greater than or equal to the number of insertions.

(2) λN(Ŝ) > min(λN(S), (T + 1)/k − λN(S) − 2 − logN(2/(N − 1))) if the number
of deletions is less than the number of insertions.

Proof. Let
Ŝ(N) = ŝ0 + ŝ1N + · · · + ŝT+kI−kD−1N

T+kI−kD

be the integer corresponding to the new sequence as in equation (3.25). Now the

modified sequence Ŝ corresponds to the N -adic number

∑

i≥0

ŝiN
i = −

Ŝ(N)

NT+kI−kD − 1
. (3.27)

We consider two cases based on whether the number of insertions is greater than the
number of deletions.

Case 1: kI ≤ kD

Let
B(N) = NkD−kI Ŝ(N) − S(N), (3.28)

and
A(N) = stk′+1N

tk′+1 + · · · + sT−1N
T−1

be the sum of the leading T − tk′ − 1 terms in the N -adic expansion of S(N). Set

f(N) = NkD−kI Ŝ(N) − A(N)

and e(N) = S(N)−A(N). The T coefficients in the N -ary expansion of NkD−kI Ŝ(N)
are

0, . . . , 0, ŝ0, ŝ1, . . . , ŝT+kI−kD−1,

where there are kD−kI zeroes before ŝ0. The last T−1−tk′ coefficients are unchanged
from S, so equal the last T − 1 − tk′ coefficients in the N -ary expansion of S(N), so
also of A(N). Since these are all the coefficients of A(N), we have

0 ≤ f(N) ≤ N tk′+1 −NkD−kI .

Also, each nonzero coefficient in the N -ary expansion of A(N) is the coefficient of the
same degree term of S(N), so that

0 ≤ e(N) ≤ N tk′+1 − 1.

Thus we have

|B(N)| = |f(N) − e(N)| ≤ max(f(N), e(N)) ≤ N tk′+1 − 1. (3.29)
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From equations (3.25), (3.27), and (3.28) we have

∑

i≥0

ŝiN
i = −

Ŝ(N)

NT+kI−kD − 1

= −
NkI−kD(S(N) +B(N))

NT+kI−kD − 1

= −
(p(NT − 1))/q +B(N)

NT −NkD−kI
.

Let

−
u

v
= −

p(NT − 1)/q +B(N)

NT −NkD−kI
,

where 0 ≤ u ≤ v, v 6= 0, and gcd(u, v) = 1. We consider the following two cases.

Case 1a: (p(NkD−kI − 1) + qB(N)) 6≡ 0 mod (NT −NkD−kI )
By Lemma 3.16, with h = q we have

v ≥
NT −NkD−kI

gcd(NT −NkD−kI , |p(NkD−kI − 1) + qB(N)|)

≥
NT −NkD−kI

|p(NkD−kI − 1) + qB(N)|
.

(3.30)

Since kD ≤ tk′ + 1, from equation (3.29) we have

|p(NkD−kI − 1) + qB(N)| < 2qN tk′+1. (3.31)

From equations (3.8), (3.30), and (3.31) we have

logN(v) > logN(NT −NkD−kI ) − logN 2 − λN(S) − tk′ − 1

≥ logN(NT −NT−1) − logN 2 − λN(S) −
(k − 1)T

k
− 1

≥
T

k
+ logN

(
N − 1

N

)
− logN 2 − λN(S) − 1.

(3.32)

Since λN(Ŝ) = max(logN(|u|), logN(|v|)), we have

λN(Ŝ) >
T

k
− λN(S) − 2 − logN

(
2

N − 1

)
. (3.33)

Case 1b: (p(NkD−kI − 1) + qB(N)) ≡ 0 mod (NT −NkD−kI )
If λN(S) + 2 + logN(2/(N − 1)) ≥ T/k, then the right hand side of equation (3.33) is
at most 0 and so the result follows immediately. Hence we may assume that

λN(S) + 2 +
2

N − 1
<
T

k
. (3.34)
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We have
p(NkD−kI − 1) + qB(N) = l(NT −NkD−kI ), (3.35)

for some l ∈ N. From equations (3.8), (3.31), (3.34), and (3.35) we have

logN l ≤ logN(2qN tk′+1) − logN(NT −NkD−kI )

≤ λN(S) + logN(2) +
(k − 1)T

k
+ 1 − logN(NT −NT−1)

= λN(S) + 2 + logN

(
2

N − 1

)
−
T

k

< 0.

Thus l = 0. From equation (3.35) this implies that

p(NkD−kI − 1) + qB(N) = 0. (3.36)

From equation (3.36) using a similar derivation as in case 1b of Theorem 3.2 we can

show that Ŝ = S. Thus Case 1 of the theorem is proved.

Case 2: kI > kD

By switching the roles of Ŝ and S, using a similar derivation as in Case 2 of Theo-
rem 3.2 we have

λN(Ŝ) >
T + 1

k
− λN(S) − 2 − logN

(
2

N − 1

)
.

Corollary 3.18. Let S be a sequence over {0, . . . , N−1} of period T and let λoper
N,k (S)

be the k-operation N -adic complexity of S. Then

(i) λoper
N,k (S) > min(λN(S), T/k − λN(S) − 2 − logN(2/(N − 1))) if the number of

deletions is greater than the number of insertions.

(ii) λoper
N,k (S) > min(λN(S), logN(NT − 1) − (k − 1)T/k − λN(S) − 1) if the number

of deletions is equal to the number of insertions. (With N = 2, compare to
Theorem 3 in [31])

(iii) λoper
N,k (S) > min(λN(S), (T + 1)/k−λN(S)− 2− logN(2/(N − 1))) if the number

of deletions is less than the number of insertions.

Proof. Parts (i) and (iii) of the corollary follow from the same observation as in
Corollary 3.3. For part (ii), considering equation (3.31) with kD = kI , we have
|p(NkD−kI − 1) + qB(N)| ≤ qN tk′+1. So from equation (3.32) with kD = kI we have

λN(Ŝ) > min

(
λN(S), logN(NT − 1) −

(k − 1)T

k
− λN(S) − 1

)
,

which gives the lower bound in part (ii) from the same observation as in Corollary 3.3.
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In Corollary 3.18 we note that for N = 2, the term logN(2/(N − 1)) = 1 and for
N > 2, −1 < logN(2/(N − 1)) ≤ 0 and can be ignored in stating the bound.

Corollary 3.19. Let S be a sequence over {0, . . . , N − 1} of period T . Suppose there
is an r ∈ {0, . . . , N − 1} that occurs t > T/2 times in a single period of S.

(i) If r = 0 or r = N − 1 then

λN(S) ≤
1

2
·

(
logN(NT − 1) −

(T − t− 1)T

T − t
− 1

)

or

λN(S) >

(
logN(NT − 1) −

(T − t− 1)T

T − t
− 1

)
.

(ii) If r 6= 0 and r 6= N − 1 then

λN(S) ≤
1

2
·

(
logN(NT − 1) −

(T − t− 1)T

T − t
− 1

)

or

λN(S) >

(
logN(NT − 1) −

(T − t− 1)T

T − t
− 1

)
− 1.

Proof. From Corollary 3.18(ii) using an argument similar to the one in Corollary 3.4
we obtain the result when r = 0. Unlike the linear complexity case, the bound does
not change when r = N − 1 since the all-N − 1 sequence has N -adic complexity 0.
But when r 6∈ {0, N − 1} the maximum value for the N -adic complexity of an all-r
sequence, r ∈ {1, . . . , N − 2}, is logN(N − 1) < 1. From this the bound follows using
an argument similar to the one in Corollary 3.4(ii).

Considering logN(NT − 1) − (T − t− 1)T/(T − t) ≈ T/(T − t) we note that the
bounds in Corollary 3.19 are similar to the linear complexity bounds in Corollary 3.4.

Corollary 3.20. By minoperN(S) denote the minimum number of operations required
to decrease the N -adic complexity of a periodic sequence S. Then,

(i) minoperN(S) satisfies

minoperN(S) >
T

2λN(S) + 3
.

(ii) If minoperN(S) = T − t0 or minoperN(S) = T − tN−1 where ti is the number
of occurrences of i in S, we have

minoperN(S) >
T

λN(S) + 2
.
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Proof. We note that for each of the three cases in Corollary 3.18 the second term in
the minimum is greater than or equal to T/k − λN(S) − 3. Using this we obtain the
bound in part (i) by an argument similar to the one in Corollary 3.6. Using part (i),
Corollary 3.19(i) and an argument similar to the one in Corollary 3.6, we obtain the
bound in part (ii).

Copyright c© Ramakanth Kavuluru, 2009.
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4 Counting Functions for 2n-Periodic Binary Sequences

While there has been considerable research on the linear complexity and the k-error
linear complexity of Fq-sequences, for k > 0, counting functions for the number of
sequences with given k-error linear complexity or exact formulae for the expected
k-error linear complexity of a random T -periodic sequence are not known even for
small k such as k = 1. The only exception is when T is prime and q is a primitive
root modulo T in which case the only possible values for linear complexity are 0, 1,
N−1, and N . In this case Meidl and Niederreiter [56] obtained exact formulae for the
k-error linear complexity for k > 0. Efficient algorithms to compute the k-error linear
complexity of periodic sequences also do not exist for arbitrary periods. Recently,
Alecu and Sălăgean [1, 2] proposed heuristic approaches to approximate the k-error
linear complexity of a given periodic binary sequence.

Given the lack of results for sequences of arbitrary periods as noted in the previous
paragraph, it is reasonable to first try to understand what happens when the period
is of a specific special form. Often, this process of starting from special cases leads
to results of more generality or equips us with a better understanding of the original
problem at hand. Sequence complexity measures for periodic sequences when the
period is a power of a prime have been explored extensively. It is interesting to
note that most of the results on the counting functions for the linear complexity
of prime power periodic sequences are obtained by analyzing efficient algorithms
that compute the linear complexity and k-error linear complexity of such sequences.
Games and Chan [19] gave an efficient algorithm for computing the linear complexity
of a 2n-periodic binary sequence, which we henceforth refer to as the Games-Chan
algorithm. Stamp and Martin [80] extended this algorithm to compute the k-error
linear complexity of 2n-periodic binary sequences for a fixed k. Both these algorithms
use O(2n) bit operations. Lauder and Patterson [44] further generalized the Games-
Chan algorithm and gave an algorithm to determine the k-error linear complexity
for all k using one execution with O(n2n) bit operations. Meidl [53] analyzed the
Games-Chan algorithm to obtain the counting function and expected values for the
1-error linear complexity of 2n-periodic binary sequences.

The Games-Chan algorithm was generalized by Ding et al. [12] and the Stamp-
Martin algorithm was generalized by Kaida et al. [33] for pn-periodic sequences over Fq

with characteristic p. Meidl and Venkateswarlu [61] used these extended algorithms
to obtain counting functions and the expected value for the 1-error linear complexity
of pn-periodic sequences over Fp. Efficient algorithms and counting functions for
the k-error linear complexity of prime power periodic binary sequences were also
explored [26, 52, 89]. Efficient algorithms for periodic sequences with periods of
other special forms have also been designed [7, 54, 88].

It should be noted here that efficient algorithms to compute the N -adic complex-
ity of prime power periodic sequences are not known; known algorithms only give
upper bounds. Meidl [51] gave an analog of the (extended) Games-Chan algorithm
to compute an upper bound on the 2-adic complexity of a given prime power periodic
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binary sequence and Dong et al. [13] provided an analog of the Martin-Stamp algo-
rithm to compute an upper bound on the k-error N -adic complexity of prime power
periodic N -ary sequences.

In this chapter we first present some preliminaries and auxiliary results and estab-
lish notation used in the latter sections. For the main contribution of this chapter,
we derive formulae for the counting functions of the k-error linear complexity of 2n-
periodic binary sequences for a few specific values of k. The particular values of k
will be discussed in the later sections.

4.1 Preliminaries, Auxiliary Results, and Notation

2n-periodic binary sequences arise in several situations in cryptography and commu-
nications. For example the counter mode of a block cipher produces such sequences.
Families of sequences like m-sequences and Sidelnikov sequences [78] have periods of
the form 2n − 1, which result in 2n-periodic sequences with a single insertion. The
linear complexities of 2n-periodic binary sequences are also interesting from a com-
binatorial perspective. Patterson [70] and Etzion [15] used the linear complexities of
2n-periodic binary sequences to construct sequences and arrays with certain window
properties for use in coding and communications. Recently, Lauder and Patterson [44]
and Sălăgean [77] used the k-error linear complexities of 2n-periodic binary sequences
to design efficient algorithms for decoding certain binary repeated-root cyclic codes.

In this section we establish notation and give some basic results on the linear
complexity of 2n-periodic binary sequences. We then discuss the Games-Chan algo-
rithm that computes the linear complexity of 2n-periodic binary sequences and derive
some useful properties of such sequences. We also derive results on the effect of mak-
ing a small number of changes to 2n-periodic binary sequences with a given linear
complexity.

4.1.1 Linear Complexity of 2n-Periodic Binary Sequences

Let S = (s0, . . . , sT−1)
∞ be a periodic binary sequence with period T . We associate

the polynomial S(x) = s0 + s1x + · · · + sT−1x
T−1 and the corresponding T -tuple

S(T ) = (s0, . . . , sT−1) to S. Recall that the relationship between the linear complexity
L(S) and the associated polynomial S(x) is given by

L(S) = T − deg(gcd(xT − 1,S(x))). (4.1)

Let wH(S) denote the Hamming weight of the T -tuple S(T ). For 0 ≤ k ≤ T , the
k-error linear complexity of S satisfies

Lk(S) = min
E

L(S + E),

where the minimum is taken over all T -periodic binary sequences E with wH(E) ≤ k.
Since we consider only 2n-periodic sequences, we have T = 2n and use the observation
that

xT − 1 = x2n

− 1 = (x− 1)2n

(4.2)
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for the rest of the chapter.
Recall that minerr(S) denotes the minimum value k such that the k-error linear

complexity of a 2n-periodic sequence S is strictly less than its linear complexity. That
is,

minerr(S) = min{k : Lk(S) < L(S)}.

With q = 2 and T = 2n in Lemma 3.5(i) we have the following result.

Lemma 4.1. For any nonzero 2n-periodic sequence S, we have

minerr(S) = 2wH(2n−L(S)),

where wH(j), denotes the Hamming weight of the binary representation of j.

For 0 ≤ k ≤ 2n, let Nk(L) and Ak(L) denote, respectively, the number of and the
set of 2n-periodic binary sequences with fixed k-error linear complexity L, 0 ≤ L ≤ 2n.
When k = 0 we simply use A(L) for sequences with a given linear complexity L and
N (L) = |A(L)|.

Rueppel [76] determined the counting function of linear complexity for 2n-periodic
binary sequences. Using equations (4.1) and (4.2) it is straightforward to characterize
the 2n-periodic binary sequences with fixed linear complexity.

Lemma 4.2 ([76]). The counting function for the linear complexity of 2n-periodic
binary sequences is

N (0) = 1 and N (L) = 2L−1 for 1 ≤ L ≤ 2n. (4.3)

Also, A(0) = {(0, 0, . . .)} and A(L), where 1 ≤ L ≤ 2n, is equal to the set of 2n-
periodic binary sequences S with the corresponding polynomials

S(x) = (1 − x)2n−La(x),

where a(x) is a binary polynomial with deg(a(x)) ≤ L− 1 and a(1) 6= 0.

The next proposition due to Rueppel is one of the first results on the expected
values of linear complexity.

Proposition 4.3 ([76]). If T = 2n, then the expected linear complexity E0 of a T -
periodic binary sequence is given by

E0 = T − 1 + 2−T .

From Proposition 4.3 we can see that the linear complexity of a random 2n-periodic
binary sequence is almost 2n.
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Games Chan (S, n)
begin

L := 0
for i := 0 to n− 1 do

if SL = SR then

S := SL

else

S := SL + SR

L := L+ 2n−i−1

fi

od

L := L+ S0

return L
end

Figure 4.1: The Games-Chan Algorithm

4.1.2 Games-Chan Algorithm

In this section we describe the Games-Chan algorithm and list some results using its
analysis.

The Games-Chan algorithm [19] is a fast algorithm for computing the linear com-
plexity of a 2n-periodic binary sequence. For any S ∈ A(L) with period S(2n) =
(s0, . . . , s2n−1), denote the left and right halves of S(2n) by

S
(2n−1)
L = (s0, . . . , s2n−1−1) and S

(2n−1)
R = (s2n−1 , . . . , s2n−1).

Let SL and SR denote the 2n−1 periodic sequences

SL = (s0, . . . , s2n−1−1)
∞ and SR = (s2n−1 , . . . , s2n−1)

∞. (4.4)

The Games-Chan algorithm can be described as in Figure 4.1.
Correctness of the Games-Chan algorithm follows by recursively applying the

following result.

Proposition 4.4. For any 2n-periodic binary sequence S = (s0, . . . , s2n−1)
∞

(i) If S
(2n−1)
L = S

(2n−1)
R , then L(S) = L(SL).

(ii) If S
(2n−1)
L 6= S

(2n−1)
R , then L(S) = 2n−1 + L(SL + SR).

Proof. When S
(2n−1)
L = S

(2n−1)
R , the result follows as S = SL.
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If S
(2n−1)
L 6= S

(2n−1)
R , then the polynomial corresponding to S is

S(x) = SL(x) + x2n−1

SR(x)

= SL(x) + SR(x) + (x2n−1

+ 1)SR(x)

= SL(x) + SR(x) + (1 + x)2n−1

SR(x).

(4.5)

From equations (4.1) and (4.2) we have

L(S) = 2n − (the largest power of (1 + x) dividing S(x)). (4.6)

We know that deg(SL(x) + SR(x)) < 2n−1 and so by equation (4.5) the largest power
of (1 + x) dividing S(x) equals the largest power of (1 + x) dividing SL(x) + SR(x).
Let this power be k. Using equation (4.6) this implies

L(S) = 2n − k = 2n−1 + 2n−1 − k = 2n−1 + L(SL + SR).

Thus part (ii) is proved.

We make some observations and establish notation we use for the rest of the
chapter. We note that the for loop in the Games-Chan algorithm shown in Figure
4.1 is executed a total of n times to compute the linear complexity of any S ∈ A(L).
In the ith step, i = 0, . . . , n − 1, the algorithm computes the linear complexity of a
2n−i-periodic binary sequence. Let ψi(S), i = 0, . . . , n− 1, denote the first period of
the 2n−i-periodic binary sequence considered in the ith step of the algorithm when
run with input sequence S. Let ψi

L(S) and ψi
R(S) denote, respectively, the left and

right halves of ψi(S). Let mi(S) denote the total value contributed to L(S) in the
algorithm during the execution from the initial value through the i-th step of the
algorithm. For any two finite binary sequences, S and S′, of same length let dH(S,S′)
denote the Hamming distance between S and S′. We slightly abuse the notation
because we also use dH(S,S′) to denote the Hamming distance between the first
periods of S,S′ ∈ A(L). It is straightforward to derive the following lemma from the
Games-Chan algorithm.

Lemma 4.5. Let S be a 2n-periodic binary sequence. For any t integers r1, . . . , rt

such that 0 < r1 < r2 < · · · < rt ≤ n, we have

L(S) = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt) (4.7)

if and only if

ψu−1
L (S) = ψu−1

R (S) exactly when u ∈ {r1, . . . , rt}. (4.8)

Fix r1, . . . , rt with 0 < r1 < · · · < rt ≤ n and let L = 2n − (2n−r1 + · · · + 2n−rt).
For any S ∈ A(L) the following properties of vectors ψl(S), 0 ≤ l ≤ n, hold.

P1: If l = ri − 1, for some i ∈ {1, . . . , t}, then wH(ψl(S)) = 2 · wH(ψl+1(S)).

P2: For any l 6= ri − 1, for all i ∈ {1, . . . , t}, we have wH(ψl(S)) ≥ wH(ψl+1(S)).
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By Pl, 0 ≤ l ≤ n, denote the number of distinct possibilities, over all sequences in
A(L), for the 2n−l-vector during the l-th step such that the 2n−l−1-vector during the
(l + 1)-th step is fixed. Then

P3: If l = ri − 1, for some i ∈ {1, . . . , t}, then Pl = 1.

P4: For any l 6= ri − 1, for all i ∈ {1, . . . , t}, we have Pl = 22n−l−1

.

We also use the following result in the next section.

Lemma 4.6. Let S ∈ A(L) with L 6= 0 represented as

L(S) = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt), (4.9)

where 0 < r1 < r2 < · · · < rt ≤ n. Let S′ 6= S be any other 2n-periodic binary sequence
such that ml−1(S) = ml−1(S′) for some l ∈ {1, . . . , n}. If dH(ψl(S), ψl(S′)) 6= 0, then

dH(S,S′) ≥ 2b · dH(ψl(S), ψl(S′)), (4.10)

where b, 1 ≤ b ≤ t, is the unique integer determined by the inequality rb ≤ l < rb+1.
Here we take r0 = 0 and rt+1 = n+ 1.

Proof. Since ml−1(S) = ml−1(S′) and rb ≤ l < rb+1, from Lemma 4.5 during the first
l − 1 steps of the Games-Chan algorithm

ψu−1
L (S) = ψu−1

R (S) and ψu−1
L (S′) = ψu−1

R (S′)

if and only if u ∈ {r1, . . . , rb}.
(4.11)

The algorithm has a 2n−l-periodic sequence as input in the l-th step. So, let

dH(ψl(S), ψl(S′)) = g, for some 1 ≤ g ≤ 2n−l. (4.12)

Let pj, 0 ≤ pj ≤ 2n−l −1, j = 1, . . . , g, be the positions where ψl(S) and ψl(S′) differ.
If l − rb > 0, then for each pj, j = 1, . . . , g, from equation (4.11) we have either

ψl−1(S)pj
= ψl−1(S′)pj

and ψl−1(S)pj+2n−l 6= ψl−1(S′)pj+2n−l , (4.13)

or
ψl−1(S)pj

6= ψl−1(S′)pj
and ψl−1(S)pj+2n−l = ψl−1(S′)pj+2n−l . (4.14)

That is, for the g positions where ψl(S) and ψl(S′) differ, there are at least g positions
where ψl−1(S) and ψl−1(S′) differ. Using a similar argument we see that

dH(ψl−c(S), ψl−c(S′)) ≥ g, 0 ≤ c ≤ l − rb. (4.15)

Equation (4.15) holds trivially if l = rb. We note that for each of S and S′, the
(rb − 1)-th step has a 2n−rb+1-periodic binary sequence whose left and right halves
are equal and either half gets input to the rb-th step. Thus, from equation (4.15), we
have

dH(ψrb−1(S), ψrb−1(S′)) ≥ 2g = 2 · dH(ψl(S), ψl(S′)). (4.16)

Using equation (4.16), the lemma follows by induction on b.
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4.1.3 Two Symbol Changes that Retain the Linear Complexity

For a 2n-periodic binary sequence S and t integers i1, . . . , it such that 0 ≤ ij ≤ 2n−1,
j = 1, . . . , t, denote by Si1,...,it the 2n-periodic binary sequence with the corresponding
polynomial

Si1,...,it(x) = S(x) + xi1 + · · · + xit .

We say that the sequence Si1,...,it is formed by a t symbol change in S. In this section,
for specific values of L, we determine the 2 symbol changes of sequences in A(L) that
retain the linear complexity, that is, that result in sequences in A(L).

Lemma 4.7. For any sequence S ∈ A(L), where L = 2n − 2n−r for some 1 ≤ r ≤ n,
and for any integer 0 ≤ i ≤ 2n − 1, the number of sequences Si,j ∈ A(L), where
0 ≤ j ≤ 2n − 1 and j 6= i, is exactly 2r−1 − 1, corresponding to all j ∈ {(i +
t2n−r+1) mod 2n : 1 ≤ t ≤ 2r−1 − 1}.

Proof. First we prove the reverse direction of the lemma. Say j = (i+t2n−r+1) mod 2n

for some 1 ≤ t ≤ 2r−1 − 1. Let the polynomial corresponding to S be

S(x) = (1 + x)2n−r

a(x), (4.17)

for some a(x) ∈ F2[x] such that deg(a(x)) ≤ 2n − 2n−r − 1 and a(1) = 1. Consider
the polynomial

xi + xi+t2n−r+1

= xi(1 + xt)2n−r+1

= xi(1 + x)2n−r+1

(1 + · · · + xt−1)2n−r+1

. (4.18)

By equations (4.17), (4.18) and the definition of linear complexity we have

L(Si,j)

= 2n − deg(gcd(1 + x2n

,Si,j(x)))

= 2n − deg(gcd(1 + x2n

,S(x) + xi + x(i+t2n−r+1) mod 2n

))

= 2n − deg(gcd(1 + x2n

,S(x) + xi + xi+t2n−r+1

))

= 2n − deg(gcd((1 + x)2n

, (1 + x)2n−r

a(x) + xi(1 + x)2n−r+1

(1 + · · · + xt−1)2n−r+1

))

= 2n − 2n−r = L.

Now we prove the forward direction. We have Si,j ∈ A(L). From Lemma 4.5 we
have

ψr−1
L (S) = ψr−1

R (S) and ψr−1
L (Si,j) = ψr−1

R (Si,j). (4.19)

Assume j 6∈ {(i + t2n−r+1) mod 2n : 1 ≤ t ≤ 2r−1 − 1}. That is i and j are not
congruent modulo 2n−r+1. By the procedure of the Games-Chan algorithm, since the
left and right halves are not equal during the first (r − 2) steps of the algorithm for
both S and Si,j, we have

dH(ψr−1(S), ψr−1(Si,j)) = 2. (4.20)

By equations (4.19) and (4.20) we have dH(ψr(S), ψr(Si,j)) = 1. This implies that
wH(ψr(S)) and wH(ψr(Si,j)) cannot both be odd, which contradicts the fact that
L(S) = L(Si,j) = 2n−2n−r. Thus it must be the case that j ∈ {(i+ t2n−r+1) mod 2n :
1 ≤ t ≤ 2r−1 − 1}.
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The corresponding result of Lemma 4.7 when 2n − 2n−r < L < 2n − 2n−r−1,
1 ≤ r ≤ n − 2, can be derived similarly. Also, Fu et al. [18] already obtained this
result and hence we omit the proof here.

Lemma 4.8. For any sequence S ∈ A(L), where 2n − 2n−r < L < 2n − 2n−r−1 for
some 1 ≤ r ≤ n − 2, and for any integer 0 ≤ i ≤ 2n − 1, the number of sequences
Si,j ∈ A(L), where 0 ≤ j ≤ 2n − 1 and j 6= i, is exactly 2r − 1, corresponding to all
j ∈ {(i+ t2n−r) mod 2n : 1 ≤ t ≤ 2r − 1}.

4.2 Counting Function for kmin(L)-Error Linear Complexity

By equations (4.1) and (4.2) we have the following result.

Lemma 4.9 ([18]). For any 2n-periodic sequence S, L(S) = 2n if and only if wH(S)
is odd.

Using Lemma 4.9 and by analyzing the Games-Chan algorithm, Meidl obtained
the counting function for the 1-error linear complexity of 2n-periodic binary sequences.

Theorem 4.10 ([53]). For all integers of the form

Lr,C = 2n − 2r+1 + C, 1 ≤ r ≤ n− 1, 1 ≤ C ≤ 2r − 1,

the number N1(Lr,C) of 2n-periodic binary sequences with linear complexity 2n and
1-error linear complexity Lr,C is given by

N1(Lr,C) = 22n−2r+1+r+C .

N1(0) = 2n, and if L 6= 0 is not of the form Lr,C, then there is no 2n-periodic binary
sequence with linear complexity 2n and and 1-error linear complexity L.

From Theorem 4.10 the number of 2n-periodic sequences with linear complexity
2n and 1-error linear complexity 2n−3 is 22n−2, which shows that in general the linear
complexity of a 2n-periodic sequence with linear complexity 2n cannot be decreased
drastically by changing only one bit.

Using Lemma 4.1 we also obtain this well known result.

Lemma 4.11 ([18]). For any 2n-periodic sequence S, if wH(S) is even then L1(S) =
L(S). If wH(S) is odd, then L2(S) = L1(S) < L(S) = 2n.

Using Lemma 4.11 and the counting function in Theorem 4.10 we have the ex-
pected value of 1-error linear complexity.

Theorem 4.12 ([53]). The expected value E1 of the 1-error linear complexity of a
random 2n-periodic sequence, n ≥ 3, is given by

E1 = 2n − 3 + 2−2n

(2n + 1) −
n−1∑

r=2

2−2r+r.
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Fengxiang and Wenfeng [17] used Meidl’s [53] approach of analyzing the Games-
Chan algorithm to obtain the counting function and gave the exact expression for
the expected value of the 2-error linear complexity of a 2n-periodic binary sequence
with linear complexity 2n − 1. In this section we perform a more rigorous analysis
of the Games-Chan algorithm to enumerate all the possible values of k-error linear
complexity of sequences in A(L) for k = 2wH(2n−L), that is when k is the minimum
number of changes needed to lower the linear complexity below L. For certain sets
of these values, we also derive the corresponding number of sequences in A(L) whose
k-error linear complexity equals the values in those sets. These results were presented
at the 15th annual workshop on Selected Areas in Cryptography (SAC 2008) [36]. For
the rest of this section, by kmin(L) denote the minimum number of changes needed
to lower the linear complexity of sequences in A(L), that is kmin(L) = 2wH(2n−L).

Before we proceed to the main results, we present a useful preliminary result.

Lemma 4.13. Consider a sequence S ∈ A(L), where

L = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt),

with r0 = 0 < r1 < r2 < · · · < rt < n + 1 = rt+1 and 1 ≤ t ≤ n − 1. Let l,
0 ≤ l ≤ n, be a positive integer such that dH(ψl

L(S), ψl
R(S)) 6= 0 and b be the unique

integer determined by rb ≤ l < rb+1. Then there exists a 2n-periodic binary sequence
S′ such that

L(S′) ≤ 2n − (2n−r1 + · · · + 2n−rb + 2n−l−1) < L(S) (4.21)

and
dH(S,S′) = 2bdH(ψl

L(S), ψl
R(S)). (4.22)

Proof. To obtain S′ we first construct a sequence of vectors S′
l−i, i = 0, . . . , l, in that

order, by modifying the corresponding vectors ψl−i(S) obtained during the execution
of the Games-Chan algorithm on S. Next we give the construction.

(i) Construction of S′
l: For each position where ψl

L(S) and ψl
R(S) differ, we flip a

bit at that position in either ψl
L(S) or ψl

R(S) to make these two halves equal,
which gives a 2n−l-vector S′

l whose left and right halves are equal.

(ii) To construct S′
l−j, j = 1, . . . , l, we follow this recursive procedure:

a) If l − j 6∈ {r1 − 1, . . . , rt − 1}, then for each index u, 0 ≤ u < 2n−(l−j+1),
where ψl−j+1(S) differs from S′

l−j+1, flip the u-th (or the u+ 2n−l+j−1-th)

bit in ψl−j(S) to form S′
l−j. (So the number of flips made in ψl−j(S) to get

S′
l−j is equal to the number of flips made in ψl−j+1(S) to construct S′

l−j+1.)

b) If l− j ∈ {r1−1, . . . , rt−1}, then obtain S′
l−j by concatenating two copies

of S′
l−j+1. (So the number of flips made in ψl−j(S) to construct S′

l−j is

double the number of flips made in ψl−j+1(S) to construct S′
l−j+1.)

(iii) Obtain S′ by taking S′(2n) = S′
0.
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To show that this construction gives an S′ that satisfies equations (4.21) and
(4.22), we proceed by using strong induction on l. When l = 0, from the construction
we see that S′ is formed by making dH(ψ0

L(S), ψ0
R(S)) many changes in S(2n). Since

b = 0 when l = 0, equation (4.22) follows. Also step (i) of the construction implies
that the left and right halves are equal in S′. From the Games-Chan algorithm we
have L(S′) ≤ 2n − 2n−1 from which equation (4.21) follows.

Let the result hold for all l ∈ {0, . . . , k−1} when dH(ψl
L(S), ψl

R(S)) 6= 0. We show
that the result holds for l = k. Let b be the unique integer such that rb ≤ k < rb+1.
We may assume dH(ψk

L(S), ψk
R(S)) 6= 0. In the recursive construction of S′

k−j,
j = 1, . . . , k, we consider two cases.

Case 1: Let there exist an integer g, 1 ≤ g ≤ k, such that k−g 6∈ {r1−1, . . . , rt−1}
and (S′

k−g)L = (S′
k−g)R. Let a be the unique integer such that ra ≤ g < ra+1. We

note that ra ≤ rb and k − g < k. Thus by inductive hypothesis we have

L(S′) ≤ 2n − (2n−r1 + · · · + 2n−ra + 2n−(k−g)−1)

< 2n − (2n−r1 + · · · + 2n−rb + 2n−k−1)

< L(S).

From inductive hypothesis and the recursive steps (ii)(a) and (ii)(b) we have

dH(S,S′) = 2adH(ψk−g
L (S), ψk−g

R (S)) = 2a · 2b−adH(ψk
L(S), ψk

R(S)).

Thus the result holds when l = k.

Case 2: If the integer g in Case 1 does not exist, from the construction of S′ we
have S′

k−j = ψ(k−j)(S′) for j = 0, . . . , k. Also, the behavior of Games-Chan algo-
rithm is the same for S and S′ in the first k − 1 steps and differs for the first time
in the k-th step. Equation (4.22) follows from the recursive steps (ii)(a) and (ii)(b)
of the construction. Equation (4.21) follows from the procedure of the Games-Chan
algorithm.

Remark 4.1. For the rest of this section we say that S′ in Lemma 4.13 is formed by
forcing ψl

L(S) = ψl
R(S) and propagating the changes made to the 0-th step of the

Games-Chan algorithm.

4.2.1 Expression for kmin(L)-Error Linear Complexity

In this section we analyze the structure of the Games-Chan algorithm to derive an
expression to enumerate all possible values of kmin(L)-error linear complexity of se-
quences in A(L) in terms of the coefficients in the binary expansion of 2n − L. That
is, we compute Lkmin(L)(S) for any S ∈ A(L). We handle the case when 1 < L < 2n

as the results are simple when L = 0 or 1 and we already know the results when
L = 2n [53]. The following lemma generalizes a result by Fengxiang and Wenfeng [17,
Lemma 2] using a similar proof.
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Lemma 4.14. For any sequence S = (s0, . . . , s2n−1)
∞ ∈ A(L), we have L ≤ 2n−2n−r,

r = 1, . . . , n, if and only if

2r−1∑

i=0

sj+i·2n−r = 0 for j = 0, . . . , 2n−r − 1.

We prove an auxiliary result that is used in the main result of this section.

Lemma 4.15. Let S ∈ A(L) with 1 < L < 2n. Consider the representation of L as

L = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt), (4.23)

where r0 = 0 < r1 < r2 < · · · < rt < n + 1 = rt+1 and 1 ≤ t ≤ n − 1. Let S′ be any
2n-periodic binary sequence such that dH(S,S′) = kmin(L) = 2t and L(S′) = L2t(S).
Define the two integers

l1 = min{i : 0 ≤ i ≤ n− 1 and mi(S′) 6= mi(S)} (4.24)

and

l2 = min{i : 0 ≤ i ≤ n− 1 and dH(ψi
L(S), ψi

R(S)) = 2t−j

with rj ≤ i < rj+1}.
(4.25)

Then we have l1 = l2.

Proof. First let us see that l1 and l2 are well defined. From Lemma 4.1 we know
kmin(L) = 2t, which implies L(S′) < L(S). We note that there exists at least one
integer i, 0 ≤ i ≤ n − 1, such that mi(S′) 6= mi(S) since otherwise L(S) = L(S′).
Hence the set on the right hand side of equation (4.24) is not empty. From the
procedure of the Games-Chan algorithm, and using the fact that L(S′) < L(S),
equation (4.24) implies

ψl1
L (S) 6= ψl1

R(S) and ψl1
L (S′) = ψl1

R(S′). (4.26)

From equation (4.26) we get

dH(ψl1(S), ψl1(S′)) ≥ dH(ψl1
L (S), ψl1

R(S)). (4.27)

Let b be the unique integer determined by the inequality rb ≤ l1 < rb+1. Since
ψrt−1

L (S) = ψrt−1
R (S) and because the vectors considered during all the steps of the

Games-Chan algorithm, except the last one, have nonzero Hamming weight, we have
wH(ψrt−1(S)) ≥ 2. So using properties P1 and P2 we get wH(ψl1+1(S)) ≥ 2t−b and
thus

dH(ψl1
L (S), ψl1

R(S)) ≥ 2t−b. (4.28)

Now we show that dH(ψl1
L (S), ψl1

R(S)) = 2t−b. If not, we have dH(ψl1
L (S), ψl1

R(S)) > 2t−b

by equation (4.28). By equation (4.27) this implies

dH(ψl1(S), ψl1(S′)) > 2t−b. (4.29)
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But from Lemma 4.6 we know dH(S,S′) ≥ 2b · dH(ψl1(S), ψl1(S′)). Since dH(S,S′) =
2t, this implies dH(ψl1(S), ψl1(S′)) ≤ 2t−b. This contradicts the inequality in (4.29).
Thus we have

dH(ψl1
L (S), ψl1

R(S)) = 2t−b. (4.30)

From equation (4.30) we know that the set on the right hand side of equation (4.25) is
not empty and l2 ≤ l1. By a denote the unique integer determined by the inequality
ra ≤ l2 < ra+1. Because there are a steps before the l2-th step where the left and
right halves are equal, it is evident from equation (4.25) that altering ψl2(S) so that
ψl2

L (S) = ψl2
R(S) and propagating these changes to the 0-th step of the Games-Chan

algorithm will require exactly 2a · 2t−a = 2t changes in S(2n). But if l2 < l1, then
by Lemma 4.13 forcing ψl2

L (S) = ψl2
R(S) will result in a 2n-periodic binary sequence

S′′ such that dH(S,S′′) = 2t and L(S′′) < L(S′). This contradicts the fact that
L(S′) = L2t(S). Thus we have l2 = l1.

Theorem 4.16. Let S ∈ A(L) with 1 < L < 2n. Consider the representation of L as

L = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt), (4.31)

where r0 = 0 < r1 < r2 < · · · < rt < n + 1 = rt+1 and 1 ≤ t ≤ n − 1. Define the
integer w = min{i : ri = n+ i− t, 1 ≤ i ≤ t+ 1}. Then Lkmin(L)(S) is 0 or is in one
of the two forms

Lj,l,C := 2n −

j−1∑

i=1

2n−ri − 2n−l + C, 1 ≤ j ≤ w − 1,

rj−1 ≤ l ≤ rj − 2, and 1 ≤ C ≤ 2n−l−1 − 1,

(4.32)

or

Lw,l,C := 2n −
w−1∑

i=1

2n−ri − 2n−l + C,

rw−1 ≤ l ≤ rw − 3 and 1 ≤ C ≤ 2n−l−1 − 2t−w+1.

(4.33)

Proof. From Lemma 4.1 and equation (4.31) we have minerr(S) = kmin(L) = 2t.
The sequences in A(L) whose 2t-error linear complexity is 0 are those with exactly
2t 1s per period. For any other sequence S in A(L) we show that the 2t-error linear
complexity is in one of the forms as stated in the theorem.

Define the integer l as in equation (4.25). That is

l = min{i : 0 ≤ i ≤ n− 1 and dH(ψi
L(S), ψi

R(S)) = 2t−j

with rj ≤ i < rj+1}.
(4.34)

We already know that the set on the right hand side of equation (4.34) is not empty
due to the intermediate findings of Lemma 4.15. By b denote the unique integer
determined by the inequality rb ≤ l < rb+1. From the proof of Lemma 4.15 we know
that altering ψl(S) such that ψl

L(S) = ψl
R(S) and propagating these changes to the 0-

th step of the Games-Chan algorithm will require exactly 2t changes in S(2n). We also
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see that it is necessary to alter ψl(S) so that ψl
L(S) = ψl

R(S) to achieve the smallest
linear complexity that can be obtained by making exactly 2t errors in S(2n) since the
remaining n− l steps can only add a maximum of 2n−l−1 to the linear complexity of
the modified sequence.

Note that l 6= rj −1, j = 1, . . . , t, since ψ
rj−1
L (S) = ψ

rj−1
R (S) for j = 1, . . . , t. Next

we show that

∀ i : l + 1 ≤ i ≤ n− 1, we have

wH(ψi(S)) = 2t−j with rj ≤ i < rj+1.
(4.35)

If equation (4.35) does not hold, then let m be any integer such that l+1 ≤ m ≤ n−1
and wH(ψm(S)) 6= 2t−a where a is uniquely determined by the inequality ra ≤ m <
ra+1. Since ψrt−1

L (S) = ψrt−1
R (S), we have wH(ψrt−1(S)) ≥ 2. Hence using properties

P1 and P2 we get wH(ψm(S)) ≥ 2t−a. This implies wH(ψm(S)) > 2t−a since we
assumed wH(ψm(S)) 6= 2t−a. Again, using P1 and P2, we have wH(ψl+1(S)) >
2a−b · 2t−a = 2t−b, which contradicts the fact dH(ψl

L(S), ψl
R(S)) = 2t−b. Thus

wH(ψm(S)) = 2t−a and so equation (4.35) holds.
To obtain the form of L2t(S) we consider two cases based on the value of w.

Case 1: w ≤ t
First we show that n−ri = t−i for i = w, . . . , t. From the definition of w in the theo-
rem statement we have n−rw = t−w. Let z, w < z ≤ t, be the smallest integer such
that n−rz 6= t−z. We have rw = n+w− t and rw < rw+1 < · · · < rz < · · · < rt ≤ n.
So (1) rz ≤ n−(t−z) = n−t+z, and (2) rz ≥ rw+z−w = n+w−t+z−w = n−t+z.
So rz = n−t+z, which contradicts our assumption about z. Thus we have n−ri = t−i
for i = w, . . . , t, which implies

L = 2n − (2n−r1 + · · · + 2n−rw−1 + 2t−w + 2t−w−1 + · · · + 20). (4.36)

From equations (4.31), (4.36) and Lemma 4.5 this means that the left and right
halves are equal from the (rw − 1)-th step to (n− 1)-th step of the execution of the
Games-Chan algorithm. Using the fact that n − rw = t − w, this implies that the
2t−w+1-vector considered during the (rw − 1)-th step,

ψrw−1(S) = (ψrw−1(S)0, . . . , ψ
rw−1(S)2t−w+1−1) = (1, . . . , 1), (4.37)

is an all-1 vector.
From the definition of w, equation (4.37) implies that wH(ψrw−2(S)) = 2t−w+1.

That is,
dH(ψrw−3

L (S), ψrw−3
R (S)) = 2t−w+1. (4.38)

By equation (4.38) and using the definition of l in equation (4.34), we have l ≤ rw−3.
We consider two cases based on the value of l.

Case 1a: rw−1 ≤ l ≤ rw − 3
We first note that this case occurs only when the binary expansion of L as in equation
(4.31) satisfies rw−1 ≤ rw−3. Throughout this case we use the fact that n−rw = t−w.
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From the definition of l in equation (4.34) we have dH(ψl
L(S), ψl

R(S)) = 2t−w+1. We
already know that making 2t−w+1 changes in ψl(S) so that ψl

L(S) = ψl
R(S) is necessary

to achieve the smallest linear complexity possible by making kmin(L) = 2t changes in
S(2n). But we have to decide for each of the 2t−w+1 positions where ψl

L(S) and ψl
R(S)

differ, whether the change should be made in ψl
L(S) or at the corresponding position

in ψl
R(S). In this case we show that there is a unique of making these 2t−w+1 changes

so that the linear complexity of the 2n−l−1-periodic binary sequence with period equal
to either of the equal halves obtained by forcing ψl

L(S) = ψl
R(S) is as small as pos-

sible. Next we describe the unique way of making these changes. That is, we show
that if S′ is a sequence constructed by forcing ψl

L(S) = ψl
R(S) using the procedure in

Lemma 4.13 such that it has the least linear complexity among sequences constructed
by the procedure, then S′ is unique.

So we know ψl+1(S′) is the 2n−l−1-vector obtained in the (l + 1)-th step when
running the Games-Chan algorithm with input S′. The left and right halves of the
vectors from the rw−1-th step to the (rw − 2)-th step of the execution of Games-Chan
algorithm on S are not equal. From equation (4.37) ψrw−1(S) is a 2t−w+1-vector with
all 1s. Hence for all v = rw−1, rw−1 + 1, . . . , rw − 2, due to the procedure of the
Games-Chan algorithm, we have

2rw−v−1−1∑

j=0

ψv(S)i+j2t−w+1 = 1 for i = 0, . . . , 2t−w+1 − 1. (4.39)

Let pi, 0 ≤ pi ≤ 2n−l−1 − 1, i = 0, . . . , 2t−w+1 − 1, be the positions where ψl
L(S)

and ψl
R(S) differ. This means wH(ψl+1(S)) = 2t−w+1 with 1s at positions pi, i =

0, . . . , 2t−w+1 − 1. As equation (4.39) is valid for v = l + 1, this implies that the
mapping from the set of pis to {0, . . . , 2t−w+1 − 1} given by pi 7→ pi mod 2t−w+1

is one-one and onto since otherwise wH(ψrw−1(S)) < 2t−w+1. Hence for each pi,
i = 0, . . . , 2t−w+1 − 1, only one of the choices, that is, changing ψl

L(S)pi
or ψl

R(S)pi

results in the 2n−l−1-vector ψl+1(S′) that satisfies

2rw−l−2−1∑

j=0

ψl+1(S′)i+j2t−w+1 = 0 for i = 0, . . . , 2t−w+1 − 1. (4.40)

We show that S′ must satisfy equation (4.40) if it has the least linear complexity
among sequences constructed by the procedure in Lemma 4.13. The contribution to
L(S) during the first l − 1 steps of the algorithm is

(2n−1 + 2n−2 + · · · + 2n−l) −
w−1∑

i=1

2n−ri = 2n − 2n−l −
w−1∑

i=1

2n−ri .

Thus the 2t-error linear complexity of S is of the form

L2t(S) = 2n − 2n−l −
w−1∑

i=1

2n−ri + C, (4.41)
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where C is the linear complexity of the 2n−l−1-periodic binary sequence with period
ψl+1(S′). By Lemma 4.14 the value C in equation (4.41) satisfies

C = L((ψl+1(S′))∞) ≤ 2n−l−1 − 2t−w+1 (4.42)

if and only if equation (4.40) holds. Thus S′ is unique since there is a unique way of
making 2t−w+1 changes in ψl(S) to get S′ so that equation (4.40) holds.

Also, ψl+1(S′) is not the all-zero vector from the definition of l in equation (4.34),
which implies C ≥ 1. Thus from equations (4.41) and (4.42), L2t(S) is in the form
Lw,l,C given in equation (4.33).

Case 1b: rj−1 ≤ l ≤ rj − 2, 1 ≤ j ≤ w − 1
From the definition of l in equation (4.34) we have dH(ψl

L(S), ψl
R(S)) = 2t−j+1. Also,

by equation (4.35) we have wH(ψrj−1(S)) = 2t−j+1. Since j 6= w we have n−rj > t−j
and so ψrj−1(S) is not an all-1 vector. More specifically if

G = {g : ψrj−1(S)g = 0, g ∈ {0, . . . , 2n−rj+1 − 1}}

then
|G| = 2n−rj+1 − 2t−j+1. (4.43)

Using an argument that is similar to the one in Case 1a, we have

L2t(S) = 2n − 2n−l −

j−1∑

i=1

2n−ri + C, (4.44)

where C is the linear complexity of the 2n−l−1-periodic binary sequence with period
ψl+1(S′), which is equal to either of the equal halves obtained by forcing ψl

L(S) =
ψl

R(S) such that the lowest possible linear complexity is achieved. The left and right
halves of the vectors considered from the l-th step to the (rj − 2)-th step are not
equal. So by equation (4.43) due to the procedure of the Games-Chan algorithm we
have

2rj−l−1−1∑

f=0

ψl(S)i+f2n−rj+1 = 0 for i ∈ G (4.45)

and

2rj−l−1−1∑

f=0

ψl(S)i+f2n−rj+1 = 1 for i ∈ {0, . . . , 2n−rj+1 − 1} −G. (4.46)

Let pi, 0 ≤ pi ≤ 2n−l−1 − 1, i = 0, . . . , 2t−j+1 − 1, be the positions where ψl
L(S)

and ψl
R(S) differ. This means wH(ψl+1(S)) = 2t−j+1. By equations (4.45) and (4.46),

this implies that the mapping from the set of pis to {0, . . . , 2n−rj+1 − 1} given by
pi 7→ pi mod 2n−rj+1 is one-one, since otherwise wH(ψrj−1(S)) < 2t−j+1. We can see
that this mapping is not onto from equation (4.43). Also, no element of G occurs as
the inverse image of any element of the set {pi : i = 0, . . . , 2t−j+1}.
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We split the summation in equation (4.45) into two separate summations involving
terms exclusively from ψl

L(S) or ψl
R(S). For each i ∈ G we have

ΣL(l, i) =
2rj−l−2−1∑

f=0

ψl
L(S)i+f2n−rj+1

and

ΣR(l, i) =
2rj−l−2−1∑

f=0

ψl
R(S)i+f2n−rj+1 .

(4.47)

For each i ∈ G, from equations (4.45) and (4.47) we know that ΣL(l, i)+ΣR(l, i) = 0,
which implies ΣL(l, i) = ΣR(l, i) = 0 or ΣL(l, i) = ΣR(l, i) = 1. Note that none of
the terms involved in the summations of equation (4.45) can be altered when forcing
ψl

L(S) = ψl
R(S). Using these remarks we can see that by making appropriate changes

at one of the positions pi or pi + 2n−l−1, for each i = 0, . . . , 2t−j+1 in ψl(S), we can
only guarantee that wH(ψl+1(S′)) is even by forcing ψl

L(S) = ψl
R(S). Thus the value

C in equation (4.44) satisfies 1 ≤ C ≤ 2n−l−1 − 1. Hence L2t(S) is in the form Lj,l,C ,
1 ≤ j ≤ w − 1, as in equation (4.32).

Case 2: w = t+ 1
The proof in this case is similar to that for Case 1 and both forms in equations (4.32)
and (4.33) are identical.

This completes the proof of the theorem.

Remark 4.2. In Section 4.2.2, by obtaining the counting function for the number of
sequences in A(L) with fixed kmin(L)-error linear complexity, we implicitly show that
there exist sequences with kmin(L)-error linear complexity equal to each of the values
listed in Theorem 4.16.

4.2.2 Counting Function

In this section we derive expressions for the number of sequences in A(L) with fixed
kmin(L)-error linear complexity. We need some preliminary results to obtain the
counting function.

Next we give a generalization of Lemma 3 in Fengxiang and Wenfeng’s paper [17]
using a more straightforward approach.

Lemma 4.17. Let S ∈ A(L) such that 1 ≤ L ≤ 2n − 2r for any r ∈ {1, . . . , n − 1}.
Let S′ be a 2n-periodic binary sequence corresponding to the polynomial

S′(x) = S(x) +

g∑

t=0

xit ,

where 0 ≤ g ≤ 2r−1 and it ∈ {0, . . . , 2n−1}, t = 0, . . . , g. If no two its are congruent
modulo 2r then we have L(S′) > L(S).
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Proof. Consider the two polynomials

a(x) =

g∑

t=0

xit and a′(x) =

g∑

t=0

xit mod 2r

, (4.48)

where the integers it, t = 0, . . . , g, are as given in the hypothesis. We have

S′(x) = S(x) + a(x). (4.49)

First we show that a(x) is not divisible by (1 + x)2r

. Since no two its are congruent
modulo 2r, the polynomial a′(x) =

∑g

t=0 x
it mod 2r

is not equal to 0 and has degree
less than 2r. Hence we have

(1 + x)2r

∤ a′(x). (4.50)

Any positive integer i can be uniquely represented as i = q · 2r + (i mod 2r) for some
integer q. We have

xi + xi mod 2r

= xi mod 2r

(1 + xq2r

) = xi mod 2r

(1 + xq)2r

.

Thus xi + xi mod 2r

is divisible by (1 + x)2r

. From equation (4.48), this implies

(1 + x)2r

| (a(x) + a′(x)). (4.51)

From equations (4.50) and (4.51) we know that a(x) is not divisible by (1 + x)2r

.
Thus we have

deg(gcd((1 + x)2n

, a(x))) ≤ 2r − 1. (4.52)

Since S ∈ A(L), we have S(x) = (1 + x)2n−Lb(x) for some polynomial b(x) ∈ F2[x]
such that b(1) = 1. Since it is given that L ≤ 2n − 2r, we have

deg(gcd((1 + x)2n

,S(x))) = 2n − L ≥ 2r. (4.53)

From equations (4.49), (4.52), and (4.53) we have

L(S′) = 2n − deg(gcd(1 + x2n

,S′(x)))

= 2n − deg(gcd((1 + x)2n

,S(x) + a(x)))

≥ 2n − 2r + 1

> L(S).

This completes the proof of the lemma.

Theorem 4.18. Let Nkmin
(L, C) be the number of sequences in A(L), 1 < L < 2n,

with fixed kmin(L)-error linear complexity C. Let L be represented as

L = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt),

where r0 = 0 < r1 < r2 < · · · < rt < n + 1 = rt+1 and 1 ≤ t ≤ n − 1. Let Lj,l,C

be defined as in equations (4.32) and (4.33) where l satisfies equation (4.34) and let
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w = min{i : ri = n+ i−t, 1 ≤ i ≤ t+1}. For 1 ≤ j ≤ w, if 1 ≤ C ≤ 2n−l−1−2n−rj+1,
then we have

Nkmin
(L,Lj,l,C) = 2ρ(j,l,C),

where

ρ(j, l, C) = 2n − 2n−l −

j−1∑

i=1

2n−ri +

w−j−1∑

i=0

(rw−i − rw−i−1 − 1)2t−w+i+1

+ (rj − l − 1)2t−j+1 + C − 1.

(4.54)

Also, Nkmin
(L, 0) = 2ρ(1,0,1) and Nkmin

(L, C) = 0 for all C not in the form Lj,l,C as in
equations (4.32) and (4.33).

Proof. From equations (4.32) and (4.33) the kmin(L)-error linear complexity of S ∈
A(L) is of the form

Lj,l,C = 2n −

j−1∑

i=1

2n−ri − 2n−l + C for 1 ≤ j ≤ w, (4.55)

where rj−1 ≤ l ≤ rj − 2. (For l = rw − 2, there exist no positive values for C in
equation (4.33) and hence no valid values for Lw,l,C .) We determine the counting
function for the number of sequences in A(L) with kmin(L)-error linear complexity
equal to each of the values Lj,l,C in equation (4.55) when 1 ≤ C ≤ 2n−l−1 − 2n−rj+1.
From the definition of l in equation (4.34) and by equation (4.35), for any S ∈ A(L)
if rj−1 ≤ l ≤ rj − 2, we know

wH(ψl+1(S)) = wH(ψrj−1(S)) = 2t−j+1. (4.56)

We consider two cases based on the value of w.

Case 1: w ≤ t
From equation (4.37) for any S ∈ A(L) the 2t−w+1-vector ψrw−1(S) is an all-1 vector.

Let D1(l) be the number of distinct 2n−l−1-vectors ψl+1(S) over all S ∈ A(L) such
that the 2n−rw+1-vector ψrw−1(S) is an all-1 vector. Let S(v) denote the support of
the vector v. To determine D1(l) we make the following observations.

(i) By equation (4.35) it is evident that during the execution of Games-Chan al-
gorithm from the (l + 1)-th step to the (n− 1)-th step the Hamming weight of
the vectors considered does not change between two consecutive steps except
when going from the (ri − 1)-th step to the ri-th step for i = j, . . . , t.

(ii) Let a be an integer so that l + 1 ≤ a < rj or ri ≤ a ≤ ri+1 − 2 for some
i ∈ {j, . . . , t}. Over all S ∈ A(L) we determine the number of distinct vectors
in the a-th step that result in a fixed vector v in the (a+ 1)-th step. First note
that for any two same size binary vectors x and y, the only way we can have
wH(x⊕y) = wH(x) +wH(y) is if S(x)∩S(y) = ∅. Using (i), the procedure of
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the Games-Chan algorithm implies that the number of distinct vectors in the
a-th step that result in a fixed vector v in the (a+ 1)-th step is equal to

|{(x,y) : x ⊕ y = v and wH(x ⊕ y) = wH(x) + wH(y)}|

= |{U ⊆ {1, . . . , wH(v)}}|

= 2wH(v).

We already know that for any S ∈ A(L) the 2t−w+1-vector ψrw−1(S) is an all-1
vector. Also, by property P1 the Hamming weight of the vector in the (ri−1)-th step
is twice the weight of the vector in the ri-th step, for i = 1, . . . , t, in the Games-Chan
algorithm. By equation (4.56) and recursively applying the observations (i), (ii), and
the property P1 we obtain

D1(l) =

(
w−j−1∏

i=0

(22t−w+i+1

)(rw−i−rw−i−1−1)

)
(2rj−l−2)2t−j+1

. (4.57)

Let S′ be the sequence obtained by forcing ψl
L(S) = ψl

R(S) in the execution of
the Games-Chan algorithm on S using 2t−j+1 changes and propagating the changes
made to the 0-th step such that the least linear complexity is achieved by making
kmin(L) errors in S(2n). So ψl+1(S′) is the vector obtained in this process when forcing
ψl

L(S) = ψl
R(S) in the l-th step. Let D2(C), 1 ≤ C ≤ 2n−l−1−2n−rj+1, be the number

of choices for ψl+1(S′) such that the linear complexity of the 2n−l−1-periodic sequence
with period ψl+1(S′) is C. By equation (4.3), we have

D2(C) = 2C−1 for 1 ≤ C ≤ 2n−l−1 − 2n−rj+1. (4.58)

Over all S ∈ A(L), for a fixed ψl+1(S) = v with wH(v) = 2t−j+1 and for a fixed choice
of ψl+1(S′) with L((ψl+1(S′))∞) = C, the number of possibilities, denoted by D3(l),
for ψl(S) such that ψl

L(S) +ψl
R(S) = v and dH(ψl(S), ψl+1(S′) | ψl+1(S′)) = 2t−j+1 is

D3(l) = 22t−j+1

, (4.59)

where ψl+1(S′) | ψl+1(S′) is the 2n−l-vector formed by concatenating two copies of
ψl+1(S′).

Let pi, 0 ≤ pi ≤ 2n−l−1 − 1, i = 0, . . . , 2t−j+1 − 1, be the positions where ψl
L(S)

and ψl
R(S) differ. In Cases 1a and 1b of the proof of Theorem 4.16, the mapping from

the set of pis to {0, . . . , 2n−rj+1 − 1} given by pi 7→ pi mod 2n−rj+1 is one-one. Using
this mapping and the condition 1 ≤ C ≤ 2n−l−1 − 2n−rj+1, by Lemma 4.17 for fixed
ψl+1(S) and ψl+1(S′) each of the 22t−j+1

possibilities for ψl(S) satisfies

L(ψl
L(S)) > C and L(ψl

R(S)) > C. (4.60)

By equations (4.57)–(4.60), using properties P3 and P4 recursively we obtain

Nkmin
(L,Lj,l,C) = P0P1 · · · Pl−1D

1(l)D2(C)D3(l). (4.61)
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(For the definition of Pi, see the comments following Lemma 4.5.) We have

P0P1 · · · Pl−1 =

j−1∏

i=1

(Pri−1
· · · Pri−2)(Prj−1

· · · Pl−1)

=

(
j−1∏

i=1

2
Pri−ri−1−1

z=1
2n−ri+z

)
2

Pl−rj−1−1

z=0
2n−l+z

.

(4.62)

By equations (4.57)–(4.60) and (4.62) a straightforward algebraic simplification of
the right hand side of equation (4.61) gives Nkmin

(L,Lj,l,C) = 2ρ(j,l,C) with ρ(j, l, C)
as in equation (4.54). We note that the condition in equation (4.60) is necessary to
avoid double counting in determining the number of distinct possibilities for ψl(S)
over all S ∈ A(L) such that ψl+1(S) and ψl+1(S′) are fixed.

Case 2: w = t+ 1
In this case we note that the two possibilities for vectors in the (n− 1)-th step of the
Games-Chan algorithm are 01 and 10. Using this it can be shown that the expression
for D1(l) in equation (4.57) holds for w = t+ 1. The remaining details are similar to
those in Case 1.

To obtain Nkmin
(L, 0) we only have to count the number of S ∈ A(L) with

wH(S) = 2t. By equation (4.35) and property P1 the expression for Nkmin
(L, 0)

follows using an argument similar to the one used for finding D1(l) as in equation
(4.57).

This completes the proof of the theorem.

4.2.3 Concluding Remarks

In this section we analyzed the Games-Chan algorithm and obtained a partial count-
ing function for the number of 2n-periodic binary sequences with a given linear com-
plexity L and a given kmin(L)-error linear complexity. We believe that the full count-
ing function can be obtained by using results in Section 4.1.3. Although we do not
provide the counting function, we note that procedure in Theorem 4.18 also shows
the existence of sequences with any given value of kmin(L)-error linear complexity
derived in Theorem 4.16.

Recently Etzion et al. [16] obtained further results on the error linear complexity
profiles of 2n-periodic binary sequences using the costed binary sequences approach
in the Lauder-Patterson [44] algorithm. The critical error linear complexity profile of
a sequence S is the set of points (k, Lk(S)) given by

E(S) = {(k, Lk(S)) : Lk′(S) > Lk(S) ∀ k′ < k}.

Each point (k, Lk(S)) ∈ E(S) is called a critical point. We see that E(S) is the set
of points where the linear complexity decreases. Etzion et al. obtained a formula
for the number of sequences with exactly two critical points. They also showed
|E(S)| ≤ 2n−2 + 2 over all 2n-periodic binary sequences S. It is an open question
whether this upper bound is attained for n ≥ 7; computer experiments showed the
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tightness for n < 7 [16]. It is also an open question to obtain the number of 2n-
periodic binary sequences with a given number of critical points. We believe further
analysis of the Games-Chan algorithm using our approach might give insights into
these questions. Generalizations of these results to sequences with arbitrary periods
or other special periods would be helpful.

4.3 Sequences with Fixed 2-Error or 3-Error Linear Complexity

In contrast to the most common approach of analyzing efficient sequence complexity
measure computation algorithms to obtain counting functions, Fu, Niederreiter, and
Su [18] studied the linear complexity and the 1-error linear complexity of 2n-periodic
binary sequences to characterize such sequences with fixed 1-error linear complexity
using algebraic and combinatorial methods. Su and Chen [81] used the same approach
to obtain results for the 1-error linear complexity of pn-periodic sequences over Fp.

Fu et al. derived some properties of the set A(L) that deal with changing two
symbols per period at fixed positions in sequences of A(L) and used them to obtain
the characterization of A1(L).

Theorem 4.19 ([18]). Let Ei, 0 ≤ i ≤ 2n − 1, be the 2n-periodic binary sequence
with a 1 at position i and 0 elsewhere in each period and 0 be the zero sequence. We
have

(i) A1(0) = {0,E0, . . . ,E2n−1} and N1(0) = 2n + 1.

(ii) If 2n − 2n−r < L < 2n − 2n−r−1 for some 0 ≤ r ≤ n− 2, then

A1(L) = A(L)
⋃
(

2n−r−1⋃

i=0

(A(L) + Ei)

)

and N1(L) = (2n−r + 1)2L−1.

(iii) If L = 2n − 2n−r, r = 1, 2, . . . , n, then A1(L) = A(L) and N1(L) = 2L−1.

For the rest of this section we use the notation and auxiliary results from Sec-
tion 4.1. In this section we first study the effect of t symbol changes in 2n-periodic
binary sequences for small t. Specifically, for various special cases of L we deter-
mine some t symbol changes of sequences in A(L) that result in sequences in A(L)
for t = 4 and 6; the case when t = 2 is already handled in Section 4.1.3. We also
characterize specific 2, 4, and 6 symbol changes in sequences of A(L) that result in
2n-periodic binary sequences with linear complexity strictly less than L. We use these
characterizations to construct disjoint decompositions of the sets A2(L) and A3(L) of
sequences with fixed 2-error or 3-error linear complexity L. Each set in the decompo-
sitions arises by changing all sequences in A(L) in a fixed set of positions. Using the
characterizations of A2(L) and A3(L) we determine the expressions for N2(L) and
N3(L). A portion of this work was presented at the 5th international conference on
SEquences and Their Applications (SETA 2008) [34] and full results appear in the
journal Designs, Codes, and Cryptography [35].
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4.3.1 Effect of Small Changes on the Linear Complexity

In this section we study the effect of a small number of changes on the linear com-
plexity of sequences in A(L) and derive some properties of A(L), which extend those
in Fu et al.’s paper [18]. We use the following generalization of Fu et al.’s result [18,
Theorem 1] in later sections.

Theorem 4.20. For a given r ∈ {1, . . . , n− 1}, let 1 ≤ L < 2n−r. Then for any two
distinct sequences S,S′ ∈ A(L) we have

dH(S,S′) = t · 2r+1 for some t ∈ {1, 2, 3, . . . , 2n−r−1},

which implies dH(S,S′) ≥ 2r+1.

Proof. For any sequence S ∈ A(L), consider the corresponding polynomial S(x) =
(1 + x)2n−La(x), where a(x) ∈ F2[x] such that deg(a(x)) ≤ L− 1 and a(1) 6= 0. Since
1 ≤ L < 2n−r, we have 2n −L > 2n − 2n−r. The generating function for S is given by

S(x)

1 − x2n =
(1 + x)(2n−2n−r)+(2n−r−L)a(x)

(1 + x)2n =
(1 + x)2n−r−La(x)

1 − x2n−r ,

which implies 2n−r is a period of S. Corresponding to any sequence M ∈ A(L),
let M(2n−r) denote the 2n−r-tuple (m0,m1, . . . ,m2n−r−1). Since 1 ≤ L < 2n−r, from
Lemma 4.9 we know that wH(S(2n−r)) and wH(S′(2n−r)) are even. Hence the Hamming
distance between S(2n−r) and S′(2n−r) is even. That is dH(S(2n−r),S′(2n−r)) = 2t for
some t ∈ {1, 2, 3, . . . , 2n−r−1}. Since 2n−r is a period of S and S′, we have dH(S,S′) =
2r · dH(S(2n−r),S′(2n−r)) = t · 2r+1. This completes the proof of the theorem.

Let S be a 2n-periodic binary sequence with 0 < L(S) < 2n and let m be an
integer such that 1 ≤ m ≤ n−1. If minerr(S) = 2m+1, then by Lemma 4.1 the linear
complexity of S can be uniquely expressed as

L(S) = 2n −
m+1∑

i=1

2n−ri , (4.63)

where 1 ≤ r1 < · · · < rm+1 ≤ n. If minerr(S) ≥ 2m+1, then by equation (4.63) the
linear complexity is bounded as

2n −

(
m−1∑

i=1

2n−ri + 2n−rm+1

)
< L(S) < 2n −

m∑

i=1

2n−ri , (4.64)

for some ri ∈ {1, . . . , n}, i = 1, . . . ,m, satisfying 1 ≤ r1 < · · · < rm. Note that
conversely, for any sequence S satisfying the inequality (4.64), we have minerr(S) ≥
2m+1. We also note that the bounds in (4.64) are unique in the sense that the linear
complexity of any 2n-periodic sequence S with minerr(S) ≥ 2m+1 satisfies exactly
one inequality of the particular form given in equation (4.64). Note that by equation
(4.64) any L such that wH(2n − L) ≥ 3 can be bounded as 2n − (2n−r1 + 2n−r2) <
L < 2n − (2n−r1 + 2n−r2−1) for some 1 ≤ r1 ≤ r2 < n.
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The first main result of this section deals with extending Lemma 4.8 to the case
when four symbols per period are changed. Here we describe four symbol changes for
sequences in A(L) such that the linear complexity of the modified sequences remains
L. We assume that the four positions where the changes are made are distinct since
the cases of four symbol changes when more than two positions are identical are
covered by Lemma 4.8. We also present a corresponding result when six symbols are
changed. The proof uses the Games-Chan algorithm and the corresponding notation
in Section 4.1.2.

Theorem 4.21. Let S ∈ A(L) where

2n − (2n−r1 + 2n−r2) < L < 2n − (2n−r1 + 2n−r2−1), (4.65)

for some r1 and r2 satisfying 1 ≤ r1 ≤ r2 < n.

(i) Consider any four integers i, j, k, and l such that 0 ≤ i < j < k < l ≤
2n−r1+1 − 1. Then L(Si,j,k,l) = L(S) if and only if i, j, k, and l are in the form

i = u+g12
n−r2 , j = u+g22

n−r2 , k = i+2n−r1 , and l = j+2n−r1 , (4.66)

where 0 ≤ u ≤ 2n−r2 − 1 and 0 ≤ g1 < g2 ≤ 2r2−r1 − 1.

(ii) There do not exist integers i1, . . . , i6 such that 0 ≤ i1 < · · · < i6 ≤ 2n−r1+1 − 1
and L(Si1,...,i6) = L(S).

Proof. We only prove the forward direction of part (i) of the theorem. The other
direction is straightforward and can be proved by reversing the argument used for
the forward case.

Consider any sequence

Si,j,k,l ∈ A(L), where 0 ≤ i < j < k < l ≤ 2n−r1+1 − 1. (4.67)

From equation (4.65) we have

wH(2n − L) ≥ 3 and L = 2n − (2n−r1 + 2n−r2−1 + c), (4.68)

for some 0 < c < 2n−r2−1. From equations (4.7), (4.8), and (4.68), we have

∀ S ∈ A(L), ψr1−1
L (S) = ψr1−1

R (S) and ψr2

L (S) = ψr2

R (S). (4.69)

By Lemma 4.5 and equation (4.68) the left and right halves are not equal during
the first r1 − 2 steps of the Games-Chan procedure for any S ∈ A(L). Thus, since
0 ≤ i, j, k, l ≤ 2n−r1+1 − 1, by the procedure of the Games-Chan algorithm we get

dH(ψr1−1(S), ψr1−1(Si,j,k,l)) = 4. (4.70)

By equations (4.69) and (4.70), the four positions where the vectors ψr1−1(S) and
ψr1−1(Si,j,k,l) differ are of the form

c1, c2, c1 +2n−r1 , and c2 +2n−r1 , for some 0 ≤ c1 < c2 ≤ 2n−r1 −1. (4.71)
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From equations (4.69) and (4.70), we have dH(ψr1−1
L (S), ψr1−1

L (Si,j,k,l)) = 2. This
implies

dH(ψr1(S), ψr1(Si,j,k,l)) = 2. (4.72)

Now we treat ψr1(S) and ψr1(Si,j,k,l) as the first periods of 2n−r1-periodic binary
sequences S′ and S′

i,j,k,l, respectively, that differ at 2 positions. With this notation,
from equations (4.71) and (4.72) we have S′ = (ψr1(S))∞, S′

i,j,k,l = (ψr1(Si,j,k,l))
∞,

and
S′

i,j,k,l(x) = S′(x) + xc1 + xc2 . (4.73)

As a consequence of the procedure of the Games-Chan algorithm, since the left and
right halves are different in the first r1 − 2 steps for both S and Si,j,k,l, we have

mr1−1(S) = mr1−1(Si,j,k,l) = 2n−1 + · · · + 2n−r1+1 = 2n − 2n−r1+1. (4.74)

Using Lemma 4.5 and by equations (4.67), (4.73), and (4.74) we have

S′,S′
i,j,k,l ∈ A(L′) where L′ = L− (2n − 2n−r1+1). (4.75)

Equations (4.65) and (4.75) imply that L′ satisfies

2n−r1 − 2n−r2 < L′ < 2n−r1 − 2n−r2−1. (4.76)

By Lemma 4.8 and equation (4.76), the positions c1 and c2 in equations (4.71) and
(4.73) must be in the form

ci = u+ gi2
n−r2 , i = 1, 2, where

0 ≤ u ≤ 2n−r2 − 1 and 0 ≤ g1 < g2 ≤ 2r2−r1 − 1.
(4.77)

From equations (4.71) and (4.77), the four positions, denoted f1, f2, f3, and f4, where
ψr1−1(S) and ψr1−1(Si,j,k,l) differ are of the form

f1 = c1, f2 = c2, f3 = c1 + 2n−r1 , and f4 = c2 + 2n−r1 , (4.78)

where c1 and c2 are as in equation (4.77).
From the procedure of the Games-Chan algorithm, we observe that a symbol

change at any position c in ψr1−1(S), 0 ≤ c ≤ 2n−r1+1 − 1, can be effected by
changing the symbol at one of the corresponding positions (c + b2n−r1+1) mod 2n,
b ∈ {0, . . . , 2r1−1 − 1}, in each period of S. Thus from equations (4.77) and (4.78), i,
j, k, and l must be in the form given in equation (4.66).

To prove part (ii) assume that there exist integers i1, . . . , i6 such that 0 ≤ i1 <
· · · < i6 ≤ 2n−r1+1 − 1 and

L(Si1,...,i6) = L(S). (4.79)

From the procedure of the Games-Chan algorithm, using an argument similar to that
used to arrive at equation (4.72), we have

dH(ψr1(S), ψr1(Si1,...,i6)) = 3. (4.80)

By equation (4.68) and Lemma 4.5 we know wH(ψr1(S)) is even since otherwise
L(S) = 2n − 2n−r1 . Using this, equation (4.80) implies that wH(ψr1(Si1,...,i6)) is odd,
which contradicts equation (4.79). Thus part (ii) of the theorem is proved.
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Remark 4.3. Note that when r1 = r2 = 1 in Theorem 4.21(i), there are no possible
distinct values for g1 and g2 in equation (4.66). Thus when 0 < L < 2n−2 there do not
exist distinct four symbol changes to any sequence in A(L) that result in sequences
with linear complexity L. This is an alternative proof of Theorem 4.20 when r = 2.

Also, for some values of L in equation (4.65), in order to write L in the form as
in equation (4.64), we must allow r1 = r2.

The following result describes certain four and six symbol changes for sequences
in A(L) that retain the linear complexity. The proof is omitted as it can be proved
using Lemma 4.7 and the approach used in Theorem 4.21.

Theorem 4.22. Let S ∈ A(L) where L = 2n − (2n−r1 + 2n−r2) for some r1 and r2
such that 1 ≤ r1 < r2 ≤ n.

(i) Consider any four integers i, j, k, and l such that 0 ≤ i < j < k < l ≤
2n−r1+1 − 1. Then L(Si,j,k,l) = L(S) if and only if i, j, k, and l are in the form

i = u+ g12
n−r2+1, j = u+ g22

n−r2+1,

k = i+ 2n−r1 , and l = j + 2n−r1 ,
(4.81)

where
0 ≤ u ≤ 2n−r2+1 − 1 and 1 ≤ g1 < g2 ≤ 2r2−r1−1 − 1. (4.82)

(ii) There do not exist integers i1, . . . , i6 such that 0 ≤ i1 < · · · < i6 ≤ 2n−r1+1 − 1
and L(Si1,...,i6) = L(S).

For any polynomial a(x) ∈ F2[x] given by a(x) = 1 + xa1 + · · · + xaq−1 , define the
weight W (a(x)) = q. Next we handle two symbol changes that decrease the linear
complexity of 2n-periodic binary sequences.

Lemma 4.23. For any sequence S ∈ A(L), where L = 2n − 2n−r for some 1 ≤
r ≤ n, and for any integer 0 ≤ i ≤ 2n − 1, the number of sequences Si,j such that
L(Si,j) < L, where 0 ≤ j ≤ 2n − 1 and j 6= i, is exactly 2r−1, corresponding to all
j ∈ {(i+ (2t+ 1)2n−r) mod 2n : 0 ≤ t ≤ 2r−1 − 1}.

Proof. First we prove the forward direction of the result. Let S(x) = (1 + x)2n−r

a(x)
for some a(x) ∈ F2[x] such that deg(a(x)) ≤ 2n − 2n−r − 1 and a(1) = 1. The
corresponding polynomial for Si,j is

Si,j(x) = (1 + x)2n−r

a(x) + xi + xj.

So L(Si,j) = 2n − deg(gcd((1 + x)2n

, (1 + x)2n−r

a(x) + xi + xj)) and hence we have

L(Si,j) < L if and only if gcd((1 + x)2n

, xi + xj) = (1 + x)2n−r

. (4.83)

Without loss of generality we may assume i < j. It is a well known fact that gcd(1 +
xa, 1 + xb) = 1 + xgcd(a,b). Hence we get

gcd((1 + x)2n

, xi + xj) = gcd(1 + x2n

, 1 + xj−i) = 1 + xgcd(2n,j−i) = 1 + x2n−r
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if and only if 2n−r divides j− i and no higher power of 2 divides j− i. Thus equation
(4.83) implies that L(Si,j) < L if and only if j = i + d2n−r for some odd integer d,
which proves the forward direction. The reverse direction can be proved using an
argument similar to that used in proving the reverse direction of Lemma 4.7.

Corollary 4.24. For any sequence S ∈ A(L), where L = 2n − 2n−r for some 1 ≤
r ≤ n, there are 2n+r−2 distinct pairs i, j, 0 ≤ i < j ≤ 2n − 1, such that L(Si,j) < L.
All such i, j are described as

i and j = i+ (2t+ 1)2n−r, (4.84)

where

0 ≤ i ≤ 2n − 2n−r − 1 and 0 ≤ t ≤ 2r−1 − 1 − ⌈(⌊i/2n−r⌋)/2⌉. (4.85)

Also, the distinct pairs i, j, 0 ≤ i < j ≤ 2n − 1, such that

1 + xj−i = (1 + x)2n−r

b(x) (4.86)

for some b(x) ∈ F2[x] with b(1) = 1 and deg(b(x)) ≤ 2n − 2n−r − 1, are exactly those
described in equations (4.84) and (4.85).

Proof. By Lemma 4.23 for each i ≥ 2n−2n−r there is no j such that i < j ≤ 2n−1 and
L(Si,j) < L. Also, for each 0 ≤ i ≤ 2n−2n−r−1 there are exactly 2r−1−⌈(⌊i/2n−r⌋)/2⌉
odd multiples of 2n−r corresponding to 0 ≤ t ≤ 2r−1 − 1 − ⌈(⌊i/2n−r⌋)/2⌉ such that
L(Si,i+(2t+1)2n−r) < L. Thus all i, j, 0 ≤ i < j ≤ 2n − 1, such that L(Si,j) < L are as
described in equations (4.84) and (4.85).

The number of distinct pairs i, j obtained from equations (4.84) and (4.85) is

2n−1∑

i=0

(
2r−1 − ⌈(⌊i/2n−r⌋)/2⌉

)
=

2n−r−1∑

i=0

2r−1 +
2r−1−1∑

l=1




(2l+1)2n−r−1∑

i=(2l−1)2n−r

(2r−1 − l)




= 2n−r2r−1 + 2n−r+1

(
2r−1−1∑

l=1

(2r−1 − l)

)

= 2n+r−2.

(4.87)

By the definition of linear complexity it is straightforward to see that the integers i,
j in equations (4.84) and (4.85) are exactly those that satisfy equation (4.86).

Our next result deals with four symbol changes that decrease the linear complexity
of 2n-periodic binary sequences.

Theorem 4.25. Let S ∈ A(L) where L = 2n − (2n−r1 + 2n−r2) for some r1, r2 such
that 1 ≤ r1 < r2 ≤ n.

(i) Consider any four integers i, j, k, and l such that 0 ≤ i < j < k < l ≤
2n−r1+1 − 1. Then L(Si,j,k,l) < L if and only if i, j, k, and l are in the form

i, j = i+ (2t+ 1)2n−r2 , k = i+ 2n−r1 , and l = j + 2n−r1 , (4.88)
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where

0 ≤ i ≤ 2n−r1 −2n−r2 −1 and 0 ≤ t ≤ 2r2−r1−1−1−⌈(⌊i/2n−r2⌋)/2⌉. (4.89)

Furthermore, if K(L) is the set of four symbol changes to S described in equa-
tions (4.88) and (4.89) that decrease its linear complexity, then

|K(L)|

= |{{i, j, k, l} : 0 ≤ i < j < k < l < 2n−r1+1 and L(Si,j,k,l) < L}|

= 2n+r2−2r1−2.

(4.90)

(ii) For any four integers it, t = 1, . . . , 4, such that 0 ≤ i1 < i2 < i3 < i4 ≤ 2n − 1,
we have L(Si1,i2,i3,i4) < L if and only if {it mod 2n−r1+1 : t = 1, . . . , 4} ∈ K(L).

(iii) There do not exist integers i1, . . . , i6, 0 ≤ i1 < · · · < i6 ≤ 2n − 1, such that
L(Si1,...,i6) < L.

Proof. First we prove the forward direction of part (i). Consider the polynomial
S(x) = (1 + x)2n−r1+2n−r2a(x) for some a(x) ∈ F2[x] such that deg(a(x)) ≤ 2n −
2n−r1 − 2n−r2 − 1 and a(1) = 1. The corresponding polynomial for Si,j,k,l is

Si,j,k,l(x) = (1 + x)2n−r1+2n−r2a(x) + xi + xj + xk + xl.

So L(Si,j,k,l) = 2n−gcd((1+x)2n

, (1+x)2n−r1+2n−r2a(x)+xi +xj +xk +xl) and hence
L(Si,j,k,l) < L if and only if gcd((1 +x)2n

, xi +xj +xk +xl) = (1 +x)2n−r1+2n−r2 . This
holds if and only if

1 + xj−i + xk−i + xl−i = (1 + x)2n−r1+2n−r2 b(x)

= (1 + x2n−r2 )b(x) + x2n−r1 (1 + x2n−r2 )b(x)
(4.91)

for some b(x) ∈ F2[x] such that b(1) = b(0) = 1. Since 0 ≤ i < j < k < l ≤ 2n−r1+1−1
we have

deg(b(x)) ≤ 2n−r1 − 2n−r2 − 1. (4.92)

Since W ((1 + x2n−r2 )b(x)) ≥ 2, by equations (4.91) and (4.92) we see that

1 + xj−i = (1 + x2n−r2 )b(x). (4.93)

By Corollary 4.24 and equations (4.91), (4.92), and (4.93) we see that i, j, k, and
l should be as in equation (4.88). The proof of the reverse direction of part (i) is
straightforward and is similar to the proof of the reverse direction of Lemma 4.7.
Equation (4.90) follows from equations (4.88), (4.89), (4.92), (4.93), Lemma 4.23,
and an argument similar to that used in Corollary 4.24 by replacing n by n− r1 and
r by r2 − r1 in equation (4.87).

To prove the forward direction of part (ii), we first note that L(Si1,i2,i3,i4) < L if
and only if the polynomial

e(x) = xi1 + xi2 + xi3 + xi4 = (1 + x)2n−r1+2n−r2 b′(x) (4.94)
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for some b′(x) ∈ F2[x] such that deg(b′(x)) ≤ 2n − 2n−r1 − 2n−r2 − 1 and b′(1) = 1.
Let u be the largest power of (1 + x) dividing

e′(x) = xi1 mod 2n−r1+1

+ xi2 mod 2n−r1+1

+ xi3 mod 2n−r1+1

+ xi4 mod 2n−r1+1

(4.95)

so that
e′(x) = (1 + x)ub′′(x) (4.96)

for some b′′(x) ∈ F2[x] such that deg(b(x)) ≤ 2n−r1+1 − u and b′′(1) = 1. For t =
1, . . . , 4 denoting qt = ⌊it/2

n−r1+1⌋ we have

xit mod 2n−r1+1

+ xit = xit mod 2n−r1+1

+ xit mod 2n−r1+1+qt2n−r1+1

= xit mod 2n−r1+1

(1 + x)2n−r1+1

(1 + · · · + xqt−1)2n−r1+1

.

By equations (4.94) and (4.96), this implies

(1 + x)2n−r1+1

| e(x) + e′(x).

So
u = 2n−r1 + 2n−r2 (4.97)

since 2n−r1+1 > 2n−r1 + 2n−r2 . Since L = 2n − (2n−r1 + 2n−r2), by equations (4.95)–
(4.97), and the definition of linear complexity we see that the four symbol changes at
positions it mod 2n−r1+1, t = 1, . . . , 4, lower the linear complexity of any S ∈ A(L).
Thus {it mod 2n−r1+1 : t = 1, . . . , 4} ∈ K(L), which concludes the proof of the forward
direction of part (ii). The reverse direction of part (ii) can be proved similarly.

To prove part (iii), suppose there were integers i1, . . . , i6, 0 ≤ i1 < · · · < i6 ≤
2n−r1+1 − 1, such that L(Si1,...,i6) < L. By the argument used to arrive at equation
(4.91) we have

xi1 + · · · + xi6 = (1 + x2n−r2 )c(x) + x2n−r1 (1 + x2n−r2 )c(x), (4.98)

for some c(x) ∈ F2[x] such that c(1) = 1 and deg(c(x)) ≤ 2n−r1 − 2n−r2 − 1. By
equation (4.98) and the upper bound on deg(c(x)) it follows that (1 + x2n−r2 )c(x) =
xi1 + xi2 + xi3 , which is not possible since (1 + x2n−r2 )c(x) has an even number of
terms. So the result follows when 0 ≤ i1 < · · · < i6 ≤ 2n−r1+1 − 1. The result holds
even when 0 ≤ i1 < · · · < i6 ≤ 2n − 1 due to an argument similar to that used to
prove part (ii).

Remark 4.4. Theorem 4.21 can also be proved with the approach of Theorem 4.25 by
using results on polynomial weights [43, Proposition 3.2].

4.3.2 Additional Notation and Auxiliary Results

In this section we establish additional notation used for the rest of the section and
derive some auxiliary results on the k-error linear complexity of 2n-periodic binary
sequences.
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Recall that Ak(L) is the set of 2n-periodic binary sequences with k-error linear
complexity L and Nk(L) = |Ak(L)|. For any 1 ≤ t ≤ 2n, let Ei1,...,it , 0 ≤ i1 <
· · · < it ≤ 2n − 1, denote the 2n-periodic binary sequence of weight t with a 1 at
positions with subscripts i1, . . . , it in the first period and 0 elsewhere. Further let
Et = {Ei1,...,it : 0 ≤ i1 < i2 < · · · < it ≤ 2n − 1} for t ≥ 1 and E0 = {0}. We
denote by A(L) + Ei1,...,it the set {S + Ei1,...,it : S ∈ A(L)}. For the rest of this
chapter, for any set R of 2n-periodic binary sequences, by A(L)[R] denote the set of
sets {A(L) + R : R ∈ R}.

We have a straightforward result that will be used in the next few sections.

Lemma 4.26 ([53]). For any 2n-periodic binary sequence S and for k ≥ 2, Lk(S) is
different from 2n − 2t for every integer t with 0 ≤ t < n.

We derive two auxiliary results used for the main results in the rest of this section.
First we see that for fixed L, the sets A(L) + Ei1,...,it form a partition of the set of
sequences with period 2n.

Theorem 4.27. Let {i1, . . . , it1} and {j1, . . . , jt2} denote two sets of subscripts where
0 ≤ il, jm ≤ 2n − 1 for l = 1, . . . , t1 and m = 1, . . . , t2. Then

(A(L) + Ei1,...,it1
) ∩ (A(L) + Ej1,...,jt2

) = ∅

or

A(L) + Ei1,...,it1
= A(L) + Ej1,...,jt2

.

Proof. We assume
0 < L ≤ 2n (4.99)

since the result holds trivially for L = 0.
Suppose (A(L) + Ei1,...,it1

) ∩ (A(L) + Ej1,...,jt2
) 6= ∅. So there exist sequences S,

S′ ∈ A(L) such that S + Ei1,...,it1
= S′ + Ej1,...,jt2

. This implies that

S + Ei1,...,it1
+ Ej1,...,jt2

= S′. (4.100)

Consider the corresponding polynomials of S and S′ given by

S(x) = (1 − x)2n−La(x) and S′(x) = (1 − x)2n−La′(x), (4.101)

where a(1) = a′(1) = 1. From equations (4.99) and (4.101) we have

deg(gcd((1 − x2n

),S(x) + S′(x))) > 2n − L. (4.102)

From equations (4.100) and (4.102) we have

deg(gcd((1 − x2n

), xi1 + · · · + xit1 + xj1 + · · · + xjt2 )) > 2n − L. (4.103)

To prove the theorem we first show that every sequence in A(L) + Ei1,...,it1
is in

A(L) + Ej1,...,jt2
. Consider any R ∈ A(L) with the corresponding polynomial

R(x) = (1 − x)2n−Lb(x), where b(1) = 1. (4.104)
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Then let R′ = R + Ei1,...,it1
+ Ej1,...,jt2

with the corresponding polynomial R′(x). By
equations (4.103) and (4.104) we have

deg(gcd((1 − x2n

),R′(x)))

= deg(gcd((1 − x)2n

,R(x) + xi1 + · · · + xit1 + xj1 + · · · + xjt2 ))

= 2n − L.

(4.105)

From equation (4.105), using the definition of linear complexity we have R′ ∈ A(L),
which implies A(L) + Ei1,...,it1

⊆ A(L) + Ej1,...,jt2
. By symmetry A(L) + Ej1,...,jt2

⊆
A(L) + Ei1,...,it1

, which proves the theorem.

We need the following generalization of Theorem 4 in Fu et al.’s paper [18] in later
sections.

Lemma 4.28. Let S be a T -periodic binary sequence. Consider any two positive
integers u, v such that 0 ≤ v ≤ u and u + v < minerr(S). Then for any T -periodic
binary sequence E such that wH(E) = v we have

Lu(S + E) = L(S).

Proof. First we note that Li(S) = L(S) for i = 0, . . . , minerr(S) − 1. Since u + v <
minerr(S), by definitions of Lu(S) and Lu+v(S) we get

Lu(S + E) ≥ Lu+v(S) = L(S). (4.106)

Also, from the observations that (S + E) + E = S and wH(E) = v ≤ u, we get

Lu(S + E) ≤ L(S). (4.107)

The lemma follows from equations (4.106) and (4.107).

Next we prove a result on the characterization and counting function of Ak(L) for
certain specific values of k and L.

Theorem 4.29. Consider L ≥ 0 such that wH(2n−L) ≥ r+1 for some 0 ≤ r ≤ n−1.

(i) The set

Ak(L) =
k⋃

t=0




⋃

Ei1,...,it
∈Et

(A(L) + Ei1,...,it)


 for k = 1, . . . , 2r − 1. (4.108)

(ii) Furthermore, if 1 ≤ L < 2n−r then the sets A(L) + Ei1,...,it, Ei1,...,it ∈ Et for
t = 0, . . . , 2r − 1 are disjoint and

Nk(L) =

(
k∑

i=0

(
2n

i

))
2L−1 for k = 1, . . . , 2r − 1. (4.109)
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Proof. By Lemma 4.1 and the hypothesis wH(2n − L) ≥ r + 1 for any S ∈ A(L) we
have minerr(S) ≥ 2r+1. Using this and Lemma 4.28 we have

k⋃

t=0




⋃

Ei1,...,it
∈Et

(A(L) + Ei1,...,it)


 ⊆ Ak(L).

Using this, equation (4.108) follows from the definition of k-error linear complexity.
To show part (ii) assume that 1 ≤ L < 2n−r. To show that the sets A(L)+Ei1,...,it ,

Ei1,...,it ∈ Et, t = 0, . . . , 2r − 1, are all disjoint, by Theorem 4.27, it is enough to show
that no two of these sets are equal. We show this by contradiction. Any two sets
A(L) + Ei1,...,iu and A(L) + Ej1,...,jv

, 0 ≤ u, v ≤ 2r − 1, are equal if and only if

A(L) + Ei1,...,iu,j1,...,jv
= A(L) with u+ v ≤ 2r+1 − 2. (4.110)

By Theorem 4.20 for any two sequences S, S′ ∈ A(L) we have dH(S,S′) ≥ 2r+1. Thus
the set equality in equation (4.110) does not hold and all the sets A(L) + Ei1,...,it ,
Ei1,...,it ∈ Et, t = 0, . . . , 2r − 1, are disjoint. Using this, the counting function in
equation (4.109) follows from equation (4.108).

4.3.3 Characterization When wH(2n − L) 6= 2

Here we characterize the 2n-periodic binary sequences with fixed 2-error or 3-error
linear complexity when the linear complexity is not of the form 2n − (2i + 2j), 0 ≤
i < j ≤ n− 1, by using the results from the previous subsection. First we obtain the
results for 2-error linear complexity and then we extend them to the 3-error linear
complexity case.

It is straightforward to see that

A2(0) = E1 ∪ E2 ∪ {0} and N2(0) =

(
2n

2

)
+ 2n + 1.

From Lemmas 4.9 and 4.11 we have A2(2
n) = ∅ and N2(2

n) = 0. From Lemma 4.26
we get A2(L) = ∅ and N2(L) = 0 for L = 2n − 2t, 0 ≤ t < n. Thus it remains to
consider the case when wH(2n − L) ≥ 3.

For any 1 ≤ L < 2n−1, from Theorem 4.20 we know that for any two sequences
S,S′ ∈ A(L), dH(S,S′) ≥ 4. Hence we have

A(L) ∩ (A(L) + Et) = ∅, (4.111)

A(L) ∩ (A(L) + Ei,j) = ∅, and (4.112)

(A(L) + Et) ∩ (A(L) + Ei,j) = ∅, (4.113)

for all Et ∈ E1 and Ei,j ∈ E2.

Theorem 4.30. Let wH(2n − L) ≥ 3 where

2n − (2n−r1 + 2n−r2) < L < 2n − (2n−r1 + 2n−r2−1), (4.114)
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for some r1 and r2 satisfying 1 ≤ r1 ≤ r2 ≤ n− 1. Then

A2(L) = A(L)
⋃
(
⋃

Ei∈E1

(A(L) + Ei)

)
⋃



⋃

Ei,j∈E2

(A(L) + Ei,j)


 . (4.115)

Define the sets

D1(L) = {Ei : 0 ≤ i ≤ 2n−r1+1 − 1} and

D2(L) = {Ei,j : 0 ≤ i < j ≤ 2n−r1+1 − 1},
(4.116)

where the definitions implicitly depend on L. Define the sets D1(L) and D2(L) by

D1(L) = {Ei,i+2n−r1 : i = u+ t2n−r2 , 1 ≤ t ≤ 2r2−r1 − 1,

and 0 ≤ u ≤ 2n−r2 − 1}
(4.117)

and

D2(L) = {Ei,j,Ei,j+2n−r1 : i = u+ t12
n−r2 , j = u+ t22

n−r2 ,

0 ≤ t1 < t2 ≤ 2r2−r1 − 1 and 0 ≤ u ≤ 2n−r2 − 1}.
(4.118)

Consider the set D(L) formed from the sets in equations (4.116), (4.117), and (4.118)
by

D(L) = D2(L) \ (D1(L) ∪ D2(L)). (4.119)

Then the sets A(L), A(L) + Ei, Ei ∈ D1(L), and A(L) + Ei,j, Ei,j ∈ D(L), are
pairwise disjoint and constitute all of A2(L). Furthermore,

N2(L) =

((
2n−r1+1

2

)
− 2n−r2(22r2−2r1 − 1) + 2n−r1+1 + 1

)
2L−1. (4.120)

Proof. Note that any L such that wH(2n − L) ≥ 3 can be expressed as in equation
(4.114). The characterization in equation (4.115) follows by using r = 2 in the hy-
pothesis of Theorem 4.29 and k = 2 in equation (4.108). The rest of the proof deals
with determining the disjoint set decomposition of A2(L) in equation (4.115) from
which we obtain the expression for N2(L).

Case 1: r1 = r2 = 1
When r1 = r2 = 1 we have 1 ≤ L < 2n−2 and the characterization and counting
function are already covered by Theorem 4.29(ii) with r = 2 and k = 2 in equation
(4.109). Also, note that the expression for the counting function in equation (4.109)
with k = 2 equals that in equation (4.120) with r1 = r2 = 1.

Case 2: 1 = r1 < r2 or 1 < r1 ≤ r2
First we determine the disjoint sets in A(L)[E1]. By equation (4.114) we have

2n − 2n−r1+1 < L < 2n − 2n−r1 . (4.121)
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Using Theorem 4.27 and Lemma 4.8, from equation (4.121) we have

(A(L) + Eu) ∩ (A(L) + Ev) = ∅, 0 ≤ u < v ≤ 2n−r1+1 − 1, (4.122)

and for u = 0, . . . , 2n−r1+1 − 1,

A(L) + Eu = A(L) + Eu+t2n−r1+1 , t = 0, . . . , 2r1−1 − 1. (4.123)

Thus, from equation (4.122) there are 2n−r1+1 disjoint sets A(L) + Ei, Ei ∈ D1(L),
in A(L)[E1]. To obtain the disjoint sets in A(L)[E2], we only have to character-
ize the disjoint sets in A(L)[D2(L)] because from equation (4.123) we have A(L) +
Ei,j,i+v2n−r1+1,j+w2n−r1+1 = A(L), for 0 ≤ i < j ≤ 2n−r1+1−1 and 0 ≤ v, w ≤ 2r1−1−1.

From Theorem 4.27, we know that A(L) + Ei,j = A(L) + Ek,l if and only if there
exists a sequence S ∈ A(L) such that S + Ei,j,k,l ∈ A(L). Hence we observe that
redundantly counted sets in A(L)[D2(L)] arise if and only if there exist integers i, j,
k, and l, 0 ≤ i < j < k < l ≤ 2n−r1+1 − 1, that are in the form given in equation
(4.66). So the sets of integers i, j, k, and l, 0 ≤ i < j < k < l ≤ 2n−r1+1 − 1, such
that L(Si,j,k,l) = L(S) for any S ∈ A(L) are thus the i, j, k, and l in the form

i = u+ g12
n−r2 , j = u+ g22

n−r2 , k = i+ 2n−r1 , l = j + 2n−r1 , (4.124)

where
0 ≤ u ≤ 2n−r2 − 1 and 0 ≤ g1 < g2 ≤ 2r2−r1 − 1. (4.125)

So for all settings of i and j in equation (4.124) we have the set equalities

A(L) + Ei,j = A(L) + Ei+2n−r1 ,j+2n−r1 (4.126)

and
A(L) + Ei,j+2n−r1 = A(L) + Ei+2n−r1 ,j. (4.127)

Also, for each u = 0, . . . , 2n−r2 − 1, we have 2r2−r1 − 1 set equalities

A(L) + Eu,u+2n−r1 = A(L) + Ei,i+2n−r1 , where i = u+ t2n−r2 (4.128)

for 1 ≤ t ≤ 2r2−r1 − 1.
Note that each error vector appearing on the left hand side or right hand side of

equations (4.126) or (4.127) corresponding to all settings of i and j in equation (4.124)
appears in only one of those equations and does not appear in the set equalities in
equation (4.128). Also note that each error vector appearing on the left hand side or
right hand side of set equalities in equation (4.128) does not appear in left hand side
or right hand side of equations (4.126) and (4.127). Thus by equation (4.124), each of
the set equalities in equations (4.126) and (4.127) results in a redundantly counted set
in A(L)[D2(L)]. These redundantly counted sets for all settings of i and j in equation
(4.124) are listed as A(L)+Ei,j, Ei,j ∈ D2(L). Similarly, for each u = 0, . . . , 2n−r2−1,
the set equalities in equation (4.128) result in 2r2−r1 − 1 redundantly counted sets in
A(L)[D2(L)]. These redundantly counted sets are listed as A(L)+Ei,j, Ei,j ∈ D1(L).
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Note that any L such that 2n−1 ≤ L < 2n and wH(2n −L) ≥ 3, satisfies equations
(4.111) and (4.113). From Lemma 4.8 and equation (4.121) we have

A(L) ∩ (A(L) + Ei,j) = ∅, Ei,j ∈ D2(L). (4.129)

Thus, from equations (4.115), (4.111)–(4.113), (4.119), (4.124)–(4.128), and (4.129),
the sets A(L), A(L) + Ei, Ei ∈ D1(L), and A(L) + Ei,j, Ei,j ∈ D(L), are mutually
disjoint and constitute all of A2(L).

From equations (4.117) and (4.118) we get

|D1(L)| = 2n−r2(2r2−r1 − 1) and |D2(L)| = 2n−r2

(
2

(
2r2−r1

2

))
. (4.130)

The number of disjoint sets in A(L)[E2] is equal to |D(L)|. From equations (4.119)
and (4.130) we have

|D(L)| = |D2(L)| − (|D1(L)| + |D2(L)|)

=

(
2n−r1+1

2

)
− 2n−r2

(
2r2−r1 − 1 + 2

(
2r2−r1

2

))
.

(4.131)

From Lemma 4.2 we have |A(L)| = 2L−1, 1 ≤ L ≤ 2n. Hence the counting function
in equation (4.120) follows from equations (4.115), (4.111)–(4.113), (4.122), (4.129),
and (4.131). This completes the proof of the theorem.

Next we give the characterization of 2n-periodic binary sequences with fixed 3-
error linear complexity L when wH(2n − L) 6= 2. Using the characterization we also
obtain the corresponding counting function. For convenience we use the notation
established in the statement of Theorem 4.30.

It is straightforward to see that

A3(0) = E1 ∪ E2 ∪ E3 ∪ {0} and N3(0) =

(
2n

3

)
+

(
2n

2

)
+ 2n + 1.

We also have A3(2
n) = ∅ and N3(2

n) = 0. From Lemma 4.26 we also get A3(L) = ∅
and N3(L) = 0 for L = 2n − 2t, 0 ≤ t < n.

Theorem 4.31. Let 1 ≤ L < 2n be a positive integer such that wH(2n − L) ≥ 3.
Then

A3(L) = A2(L)
⋃



⋃

Ei,j,k∈E3

(A(L) + Ei,j,k)


 . (4.132)

Furthermore, let L be bounded as

2n − (2n−r1 + 2n−r2) < L < 2n − (2n−r1 + 2n−r2−1),

for some r1 and r2 satisfying 1 ≤ r1 ≤ r2 ≤ n−1. Let D(L) be as in equation (4.119).
Define the sets D3(L), D3(L), and E(L) by

D3(L) = {Ei,j,k : 0 ≤ i < j < k ≤ 2n−r1+1 − 1},
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D3(L) = {Ei,j,k,Ei,j,l,Ej,k,l,Ei,k,l : i = u+ g12
n−r2 , j = u+ g22

n−r2 ,

k = i+ 2n−r1 , l = j + 2n−r1 , 0 ≤ g1 < g2 < 2r2−r1 ,

and 0 ≤ u ≤ 2n−r2 − 1},

(4.133)

and
E(L) = D3(L) \ D3(L). (4.134)

Then the sets A(L), A(L) + Ei, Ei ∈ D1(L), A(L) + Ei,j, Ei,j ∈ D(L), and A(L) +
Ei,j,k, Ei,j,k ∈ E(L), are pairwise disjoint and constitute all of A3(L). Furthermore,

N3(L) = N2(L) +

((
2n−r1+1

3

)
− 4 · 2n−r2

(
2r2−r1

2

))
2L−1. (4.135)

Proof. The characterization in equation (4.132) follows by using r = 2 in the hypoth-
esis of Theorem 4.29 and k = 3 in equation (4.108). The rest of the proof deals with
determining the disjoint set decomposition of A3(L) in equation (4.132) from which
we obtain the expression for N3(L).

The case when r1 = r2 = 1, that is, when 1 ≤ L < 2n−2, is covered by Theo-
rem 4.29(ii) with r = 2 and k = 3 in equation (4.109). It is straightforward to verify
that the results using Theorem 4.29 when r1 = r2 = 1 agree with those stated in this
theorem.

The rest of the proof handles the case when r1 = 1 < r2 or 1 < r1 ≤ r2. We char-
acterize the disjoint sets in the union given in equation (4.132). From Theorem 4.30
the disjoint sets in A2(L) in equation (4.115) are A(L), A(L) + Ei, Ei ∈ D1(L), and
A(L) + Ei,j, Ei,j ∈ D(L). Next we characterize the disjoint sets in A(L)[E3]. For
this, from equations (4.122) and (4.123) we only have to describe the disjoint sets
in A(L)[D3(L)]. From Theorem 4.21(ii) we can see that all sets in A(L)[D3(L)] are
disjoint.

Finally, we show that the sets in A(L)[D3(L)] are disjoint from the sets A(L),
A(L) + Ei, Ei ∈ D1(L), and A(L) + Ei,j, Ei,j ∈ D(L). Since the Hamming weight of
any sequence in the sets in A(L)[D3(L)] is odd, these sets are disjoint from sets A(L)
and A(L)+Ei,j, Ei,j ∈ D(L). From Theorem 4.27, a set A(L)+Ei, 0 ≤ i ≤ 2n−r1+1−1,
is equal to some set A(L) + Ej,k,l, 0 ≤ j, k, l ≤ 2n−r1+1 − 1, if and only if there
exists a sequence S ∈ A(L) such that Si,j,k,l ∈ A(L). All such i, j, k, and l are
described in equations (4.124) and (4.125). From equations (4.124) and (4.125), for

each u = 0, . . . , 2n−r2−1 there are exactly
(
2r2−r1

2

)
distinct pairs i, j and hence distinct

sets {i, j, k, l} such that 0 ≤ i < j < k < l ≤ 2n−r1+1 − 1 and A(L) + Ei,j,k,l = A(L).
For each such distinct set {i, j, k, l} we have four set equalities

A(L) + Ei,j,k = A(L) + El, A(L) + Ei,j,l = A(L) + Ek,

A(L) + Ej,k,l = A(L) + Ei, and A(L) + Ei,k,l = A(L) + Ej.
(4.136)

Based on the settings of possible i, j, k, and l in the equations we note that each
error vector with Hamming weight 3 that appears in the set equalities in equation
(4.136) appears in exactly one of them. This leads to four redundantly counted sets
for each distinct setting of i, j, k, and l as described above. Thus all the redundantly
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counted sets in the intersection of A(L)[D3(L)] and A(L)[D1(L)] are A(L) + Ei,j,k,
Ei,j,k ∈ D3(L). Hence the sets in E(L) in equation (4.134) are disjoint from the sets
A(L), A(L)+Ei, Ei ∈ D1(L), and A(L)+Ei,j, Ei,j ∈ D(L). Using the definition of k-
error linear complexity the sets A(L), A(L)+Ei, Ei ∈ D1(L), A(L)+Ei,j, Ei,j ∈ D(L),
and A(L)+Ei,j,k, Ei,j,k ∈ E(L), are mutually disjoint and thus constitute all of A3(L).
Using this, the counting function in equation (4.135) follows from the definition of
E(L) in equation (4.134).

4.3.4 Characterization When wH(2n − L) = 2

We use results in Section 4.3.1 and the notation established in Section 4.3.3 to ob-
tain the characterization of sequences in A(L) with fixed 2-error or 3-error linear
complexity when L = 2n − (2n−r1 + 2n−r2), 1 ≤ r1 < r2 ≤ n.

Theorem 4.32. Let L = 2n − (2n−r1 + 2n−r2) for some 1 ≤ r1 < r2 ≤ n. Define the
sets

G1(L) = {Ei : 0 ≤ i ≤ 2n−r1+1 − 1} and

G2(L) = {Ei,j : 0 ≤ i < j ≤ 2n−r1+1 − 1}.
(4.137)

Consider the sets

H1(L) = {Ei,i+2n−r1 : 0 ≤ i ≤ 2n−r1 − 1}, (4.138)

H2(L) = {Ei,j,Ei+2n−r1 ,j+2n−r1 ,Ei,j+2n−r1 ,Ej,i+2n−r1 :

0 ≤ i ≤ 2n−r1 − 2n−r2 − 1, j = i+ (2t+ 1)2n−r2 ,

and 0 ≤ t ≤ 2r2−r1−1 − 1 − ⌈(⌊i/2n−r2⌋)/2⌉},

(4.139)

and

H3(L) = {Ei,j,Ei,j+2n−r1 : i ≡ j mod 2n−r2+1

where 0 ≤ i < j < 2n−r1}.
(4.140)

Finally, define the set

H(L) = G2(L) \ (H1(L) ∪H2(L) ∪H3(L)). (4.141)

Then the sets A(L), A(L) + Ei, Ei ∈ G1(L), and A(L) + Ei,j, Ei,j ∈ H(L), are
pairwise disjoint and constitute all of A2(L). That is

A2(L) = A(L)
⋃



⋃

Ei∈G1(L)

(A(L) + Ei)



⋃



⋃

Ei,j∈H(L)

(A(L) + Ei,j)


 . (4.142)

Furthermore,

N2(L) =

((
2n−r1+1

2

)
− 3 · 2n+r2−2r1−1 + 2n−r1+1 + 1

)
2L−1. (4.143)
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Proof. By the definition of k-error linear complexity we have

A2(L) ⊆ A(L)
⋃
(
⋃

Ei∈E1

(A(L) + Ei)

)
⋃



⋃

Ei,j∈E2

(A(L) + Ei,j)


 . (4.144)

For the rest of the proof let S be any sequence in A(L). By Lemma 4.1 we have
L2(S) = L and by Lemma 4.28 we get L2(S + Ei) = L for any Ei ∈ E1. Thus

A(L)
⋃
(
⋃

Ei∈E1

(A(L) + Ei)

)
⊆ A2(L). (4.145)

Since 2n − 2n−r1+1 < L < 2n − 2n−r1 , equations (4.122) and (4.123) also hold in
the current setting. Thus there are 2n−r1+1 disjoint sets A(L) + Ei, Ei ∈ G1(L), in
A(L)[E1]. So we have

⋃

Ei∈E1

(A(L) + Ei) =
⋃

Ei∈G1(L)

(A(L) + Ei). (4.146)

Equations (4.122) and (4.123) also imply that A(L)[E2] = A(L)[G2(L)]. Next we
determine which of the sets in A(L)[G2(L)] have sequences that belong to A2(L).
Equations (4.88) and (4.89) describe all distinct four symbol changes i, j, k, and l,
0 ≤ i < j < k < l ≤ 2n−r1+1 − 1, such that L(Si,j,k,l) < L. By equations (4.88) and
(4.89) it is evident that for each integer u, 0 ≤ u ≤ 2n−r1 − 1, there exist integers v1

and v2, 0 ≤ v1, v2 ≤ 2n−r1+1 − 1, such that L(S + Eu,u+2n−r1 + Ev1,v2
) < L. Thus

∀ S ∈ A(L) ∃ i, j : If Ei,j ∈ H1(L) then L2(S + Ei,j) < L. (4.147)

For each set of four symbol changes in equation (4.88) there are four distinct sequences
Ei,j, Ei,j+2n−r1 , Ej,i+2n−r1 , and Ei+2n−r1 ,j+2n−r1 in G2(L) that when added to S result
in sequences with 2-error linear complexity less than L. That is

∀ S ∈ A(L) ∃ i, j : If Ei,j ∈ H2(L) then L2(S + Ei,j) < L. (4.148)

By equations (4.147), (4.148), and Theorem 4.25(ii) we have

∀ S ∈ A(L) ∃ i, j : If G2(L) \ (H1(L) ∪H2(L)) then L2(S + Ei,j) = L

and thus
⋃

Ei,j∈G2(L)\(H1(L)∪H2(L))

(A(L) + Ei,j) ⊆ A2(L) and

⋃

Ei,j∈H1(L)∪H2(L)

(A(L) + Ei,j) ∩ A2(L) = ∅.
(4.149)

Next we describe the disjoint sets in {A(L)+Ei,j : Ei,j ∈ G2(L)\(H1(L)∪H2(L))}.
From Theorem 4.27, we know that A(L)+Ei,j = A(L)+Ek,l if and only if there exists
a sequence R ∈ A(L) such that the new sequence R + Ei,j,k,l is in A(L). Exactly
all such i, j, k, and l are in the form given in equations (4.81) and (4.82). From the
definitions in equations (4.138)–(4.140) we see the following.
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(i) If Ei,j ∈ H1(L) then j − i is 2n−r1 .

(ii) If Ei,j ∈ H2(L) then j − i is an odd multiple of 2n−r2 .

(iii) If Ei,j ∈ H3(L) then j − i is an even multiple of 2n−r2 and |j − i| < 2n−r1 .

From these observations we conclude

Hm1(L) ∩Hm2(L) = ∅, 1 ≤ m1 < m2 ≤ 3. (4.150)

For each of the 2n−r2+1
(
2r2−r1−1

2

)
distinct settings of i and j in equations (4.81) and

(4.82) the set equalities in equations (4.126) and (4.127) hold. By equation (4.150)
and using an argument similar to that used in Theorem 4.30, this implies that there
are 2 · 2n−r2+1

(
2r2−r1−1

2

)
redundantly counted sets in {A(L) + Ei,j : Ei,j ∈ G2(L) \

(H1(L) ∪H2(L))} enumerated as A(L) + Ei,j, Ei,j ∈ H3(L). (Note that the distinct
settings of i and j in equations (4.81) and (4.82) are identical to those in equation
(4.140).) So we have

⋃

Ei,j∈G2(L)\(H1(L)∪H2(L))

(A(L) + Ei,j)

=
⋃

Ei,j∈G2(L)\(H1(L)∪H2(L)∪H3(L))

(A(L) + Ei,j).
(4.151)

Since 2n − 2n−r1+1 < L < 2n − 2n−r1 , by Lemma 4.8 and Theorem 4.27 we have

A(L) ∩ (A(L) + Eu) = ∅,

A(L) ∩ (A(L) + Ei,j) = ∅, and

(A(L) + Eu) ∩ (A(L) + Ei,j) = ∅,

(4.152)

for all Eu ∈ G1(L) and Ei,j ∈ G2(L). Thus by equations (4.144)–(4.146) and (4.149)–
(4.152) the sets A(L), A(L) + Ei, Ei ∈ G1(L), and A(L) + Ei,j, Ei,j ∈ H(L), are
mutually disjoint and constitute all of A2(L) and the characterization in equation
(4.142) follows.

By equations (4.138) and (4.140) we have

|H1(L)| = 2n−r1 and

|H3(L)| = 2 · 2n−r2+1

(
2r2−r1−1

2

)
= 2n+r2−2r1−1 − 2n−r1 .

(4.153)

Each set of four symbol changes in equation (4.81) contributes four elements to the
cardinality of H2(L) as specified in equation (4.139). So by equations (4.90) and
(4.139) we have

|H2(L)| = 4 · 2n+r2−2r1−2 = 2n+r2−2r1 . (4.154)

Thus by equations (4.137), (4.141), (4.150), (4.153), and (4.154) we obtain

|H(L)| = |G2(L)| − (|H1(L)| + |H2(L)| + |H3(L)|)

=

(
2n−r1+1

2

)
−
(
2n−r1 + 2n+r2−2r1 + 2n+r2−2r1−1 − 2n−r1

)

=

(
2n−r1+1

2

)
− 3 · 2n+r2−2r1−1.

(4.155)
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The counting function in equation (4.143) follows from equations (4.3), (4.137),
(4.142), and (4.155).

For convenience, we use the notation established in the statement of Theorem 4.32
in the next result.

Theorem 4.33. Let L = 2n − (2n−r1 + 2n−r2) for some 1 ≤ r1 < r2 ≤ n. Define the
sets G3(L), M1(L), and M2(L) by

G3(L) = {Ei,j,k : 0 ≤ i < j < k ≤ 2n−r1+1},

M1(L) =
2n−r1−2n−r2−1⋃

i=0

{Ei,j,k,Ei,j,l,Ei,k,l,Ej,k,l : j = i+ (2t+ 1)2n−r2 ,

k = i+ 2n−r1 , l = j + 2n−r1 ,

and 0 ≤ t ≤ 2r2−r1−1 − 1 − ⌈(⌊i/2n−r2⌋)/2⌉},

(4.156)

and

M2(L) =
2n−r2+1−1⋃

u=0

{Ei,j,k,Ei,j,l,Ei,k,l,Ej,k,l : i = u+ g12
n−r2+1,

j = u+ g22
n−r2+1, k = i+ 2n−r1 , l = j + 2n−r1 ,

and 0 ≤ g1 < g2 ≤ 2r2−r1−1 − 1}.

(4.157)

Finally, define the set

M(L) = G3(L) \ (M1(L) ∪M2(L)). (4.158)

Let H(L) be as in equation (4.141) in Theorem 4.32. Then the sets A(L), A(L)+Ei,j,
Ei,j ∈ H(L), and A(L) + Ei,j,k, Ei,j,k ∈ M(L), are pairwise disjoint and constitute
all of A3(L). That is,

A3(L) = A(L)
⋃



⋃

Ei,j∈H(L)

(A(L) + Ei,j)




⋃



⋃

Ei,j,k∈M(L)

(A(L) + Ei,j,k)


 .

(4.159)

Furthermore,

N3(L) =

((
2n−r1+1

3

)
+

(
2n−r1+1

2

)
− 7 · 2n+r2−2r1−1 + 2n−r1+1 + 1

)
2L−1. (4.160)

Proof. By the definition of k-error linear complexity we have

A3(L) ⊆ A(L)
3⋃

t=1




⋃

Ei1,...,it
∈Et

(A(L) + Ei1,...,it)


 . (4.161)
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For the rest of the proof let S be any sequence in A(L). By Lemma 4.1 we have
L3(S) = L and so

A(L) ⊆ A3(L). (4.162)

Since 2n − 2n−r1+1 < L < 2n − 2n−r1 , equations (4.122) and (4.123) also hold in
the current setting. Thus there are 2n−r1+1 disjoint sets A(L) + Ei, Ei ∈ G1(L), in
A(L)[E1] and thus equation (4.146) holds. By the format of four symbol changes that
decrease the linear complexity of S given in equations (4.88) and (4.89), for each i1 =
0, . . . , 2n−r1+1 − 1, there exist three integers i2, i3, and i4 such that L(Si1,i2,i3,i4) < L,
which implies ⋃

Ei∈G1(L)

(A(L) + Ei) ∩ A3(L) = ∅. (4.163)

By the proof of Theorem 4.32 we know that sequences in sets A(L)+Ei,j, Ei,j ∈ E2,
with 3-error linear complexity L are given by the disjoint union

⋃

Ei,j∈H(L)

(A(L) + Ei,j) ⊆ A3(L). (4.164)

Equations (4.122) and (4.123) imply A(L)[E3] = A(L)[G3(L)]. So it is sufficient
to determine the sequences in sets A(L)+Ei,j,k, Ei,j,k ∈ G3(L), that belong to A3(L).
For each set of four symbol changes in equation (4.88) there are four distinct sequences
Ei,j,k, Ei,j,l, Ei,k,l, and Ej,k,l in G3(L) that when added to S result in sequences with
3-error linear complexity less than L. That is

⋃

Ei,j,k∈M1(L)

(A(L) + Ei,j,k) ∩ A3(L) = ∅. (4.165)

Equations (4.81) and (4.82) describe all i, j, k, and l, 0 ≤ i < j < k < l ≤ 2n−r1+1−1,
such that L(Si,j,k,l) = L. For each set of these four symbol changes we have four set
equalities A(L) + Ei = A(L) + Ej,k,l, A(L) + Ej = A(L) + Ei,k,l, A(L) + Ek =
A(L) + Ei,j,l, and A(L) + El = A(L) + Ei,j,k. By equation (4.163) this implies that

⋃

Ei,j,k∈M2(L)

(A(L) + Ei,j,k) ∩ A3(L) = ∅. (4.166)

By equation (4.156) for each Ei,j,k ∈ M1(L) we have either i − j, j − k, or k − i is
an odd multiple of 2n−r2 . By equation (4.157) for each Ei,j,k ∈ M2(L) we have i− j,
j − k, and k − i are all even multiples of 2n−r2 . From this we see that

M1(L) ∩M2(L) = ∅. (4.167)

By equations (4.165), (4.166), and (4.167), Theorem 4.21(ii) and Theorem 4.25(iii),
and using the fact that an odd number of changes to S results in a sequence with
linear complexity 2n, the sequences in the sets A(L) + Ei,j,k, Ei,j,k ∈ G3(L) with
3-error linear complexity L are given by the disjoint union

⋃

Ei,j,k∈G3(L)\(M1(L)∪M2(L))

(A(L) + Ei,j,k) ⊆ A3(L). (4.168)
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By equations (4.161)–(4.164), (4.168), and using the fact that odd numbers of changes
to S result in sequences with linear complexity 2n, the sets A(L), A(L) + Ei,j, Ei,j ∈
H(L), and A(L) + Ei,j,k, Ei,j,k ∈ M(L), are mutually disjoint and constitute all of
A3(L) and the characterization in equation (4.159) follows.

From equations (4.81), (4.88), (4.90), and (4.156)–(4.158) we have

|M(L)| = |G3(L)| − (|M1(L)| + |M2(L)|)

=

(
2n−r1+1

3

)
−

(
4 · 2n+r2−2r1−2 + 4 · 2n−r2+1

(
2r2−r1−1

2

))

=

(
2n−r1+1

3

)
+ 2n−r1+1 − 4 · 2n+r2−2r1−1.

(4.169)

The counting function in equation (4.160) follows from equations (4.3), (4.155),
(4.159), and (4.169).

4.3.5 Concluding Remarks

In this section we used algebraic and combinatorial methods to characterize and
count the number of 2n-periodic binary sequences with fixed 2-error or 3-error linear
complexity. Here we make some observations based on the counting functions derived
in the previous two sections.

Let N≥(L), 0 ≤ L ≤ 2n, be the number of 2n-periodic binary sequences with
linear complexity at least L. From Lemma 4.2 we have

N≥(L) =

(
22n−L+1 − 1

22n−L+1

)
22n

. (4.170)

Define fk(L), 1 ≤ k ≤ 2n, by

fk(L) =
Nk(L)

N≥(L)
. (4.171)

That is, fk(L) describes the proportion of sequences with k-error linear complexity L
among sequences with linear complexity at least L. For cryptographic purposes we
would like to have fk(L) as high as possible for large L and at least for small k.

By equations (4.120), (4.143), (4.170), and (4.171) after simplification we obtain

f2(L) =
22n−2r1+1 + 2n−r1 + 2n−r2 + 1 − 2n+r2−2r1

22n−L+1 − 1
(4.172)

when 2n − (2n−r1 + 2n−r2) < L < 2n − (2n−r1 + 2n−r2−1) with 1 ≤ r1 ≤ r2 ≤ n− 1 and

f2(L) =
22n−2r1+1 + 2n−r1 + 1 − 3 · 2n+r2−2r1−1

22n−L+1 − 1
(4.173)

when L = 2n − (2n−r1 + 2n−r2), 1 ≤ r1 < r2 ≤ n. Using these formulae we find f2(L)
for L = 2n − 3, 2n − 5, 2n − 6, and 2n − 7. When L = 2n − 7, we have wH(2n −L) = 3
and we can uniquely bound L as 2n − (2n−r1 + 2n−r2) < L < 2n − (2n−r1 + 2n−r2−1)
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with r1 = r2 = n − 2. Using L = 2n − 7 and r1 = r2 = n − 2 in equation (4.172)
we have f2(2

n − 7) = 37/255 ≈ 1/7. When L = 2n − 3, we have wH(2n − L) = 2
and L = 2n − (2n−r1 + 2n−r2) with r1 = n − 1 and r2 = n. So we have f2(2

n − 3) =
5/15 = 1/3 by equation (4.173). Similarly we obtain f2(2

n − 5) = 13/63 ≈ 1/5 and
f2(2

n − 6) = 25/127 ≈ 1/5. Using equations (4.135), (4.160), (4.170), and (4.171)
we also obtain corresponding values for f3(L). Using Theorem 4.19 we determine
the corresponding values for f1(L). All these values are summarized in Table 4.1.
Since the number of sequences with high linear complexity is large for 2n-periodic

Table 4.1: f1(L), f2(L), and f3(L) for large L

L f1(L) f2(L) f3(L)

2n − 3 1/3 1/3 1/15

2n − 5 1/7 13/63 ≈ 1/5 37/63 ≈ 1/2

2n − 6 9/127 ≈ 1/14 25/127 ≈ 1/5 65/127 ≈ 1/2

2n − 7 9/255 ≈ 1/28 37/255 ≈ 1/7 93/255 ≈ 1/3

binary sequences, we see that a considerable number of sequences have high linear
complexity and high 2-error or 3-error linear complexity.

Using the counting functions derived in this section, statistical properties like
expected value and variance can also be considered for the 2-error or 3-error lin-
ear complexity of 2n-periodic binary sequences. The resulting expressions for the
expected values are quite complicated and unlikely to yield a simple closed form.
However, estimates may be possible. Extension to pn-periodic sequences over Fp can
also be considered. Similar results for periodic sequences with arbitrary period or
periods of other forms are desirable.

Remark 4.5. It is important to note here that 2n-periodic sequences may not be used
as key streams for stream ciphers. This is true especially if the attacker knows that
the key streams have period 2n. In this case knowing a segment of length t ≥ L, the
linear complexity, would enable the attacker to recover the whole sequence using the
fact that (1 − x)t is a characteristic polynomial for the sequence.

Copyright c© Ramakanth Kavuluru, 2009.
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5 Further Research

The sequence complexity measures discussed in this thesis are based on LFSRs and
FCSRs. One can similarly define measures based on any class of generators. The mea-
sure would simply be the length of the shortest generator of that class that generates
the given sequence. We note that even though all eventually periodic sequences can
be generated by LFSRs, it is important to study other types of generators with syn-
thesis algorithms because the length of the shortest LFSR that generates a sequence
might be very high compared to the length of the shortest generator of a different
class. Thus a cryptanalyst would have more tools now to analyze the cryptographic
strength of a sequence compared to when only LFSRs were studied. In this chapter
we discuss future research directions based on feedback shift register (FSR) based
sequence complexity measures. Then we outline ideas for using research on sequence
complexity measures for design and analysis of stream ciphers.

5.1 FSR Based Sequence Complexity Measures

As mentioned earlier, counting functions for N -adic complexity measures do not
exist in the literature and are comparatively difficult to derive because certain nice
properties of polynomials over finite fields do not apply to N -adic representations of
integers. The expected value of k-error N -adic complexity is also not determined yet.
The N -adic analogs for most of the results on k-error linear complexity also do not
exist at the time of this writing.

Arithmetic k-Error N-adic Complexity

Besides the measures based on substitutions, insertions, and deletions, a new com-
plexity measure is introduced in the following definition.

Definition 5.1. The arithmetic k-error N -adic complexity, λa
N,k(S), of a periodic

sequence S is the lowest N -adic complexity achieved by modifying a single period of
S by N -adic addition or subtraction with carry of an error vector of length equal to
the period and with Hamming weight at most k.

λa
N,k(S) differs from λN,k(S) in that the elements in the error vector are substituted

for the corresponding elements in the S in the latter case while the error vector is
N -adically added/subtracted in the former.

Let S = (s0, . . . , sT−1)
∞ and let S(N) denote s0 + s1N + · · · + sT−1N

T−1. Then
the N -adic complexity of S is logN((NT − 1)/ gcd(NT − 1,S(N))). Now λa

N,k(S) can
also be defined as

λa
N,k(S) = min

{
λN

(
−

(S(N) ±m)

NT − 1

)
: m ≥ 0 and wH(m) ≤ k

}
,

where λN(S) denotes the N -adic complexity.
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Example 5.1. Let N = 2, T = 8, S = (10110000)∞, and k = 1. So S(2) = 13. The
rational representation of the corresponding 2-adic number is −13/255. By using all
possible error vectors the lowest 2-adic complexity can be obtained by subtracting
64 from S(2). So here m = 64 and the rational representation of the new sequence
is −(13 − 64)/255 = 51/255 = 1/5. Thus we have λa

2,k=1(S) = log2 5. Here λ2(S) =
log2 255 and λ2,k=1(S) = log2 17.

We make the following two observations about λa
N,k(S) from Example 5.1.

(i). The inclusion of both addition and subtraction of the error vector in the def-
inition of λa

N,k(S) is important. In this example no other m with wH(m) = 1
exists that can be added to decrease the complexity to log2 5.

(ii). We note that after the modification the sequence may not be strictly periodic.
Nevertheless, the complexity is reduced to the minimum possible with that k.

We have the following result on the relationship between λa
2,k(S) and λ2,k(S).

Lemma 5.1. Let S be a periodic binary sequence with period T . Then λa
2,k(S) ≤

λ2,k(S) for k = 1. This relationship or λa
2,k(S) ≥ λ2,k(S) does not hold for k > 1.

Proof. The number of error vectors possible is T if k = 1. From Definition 5.1 λa
2,k(S)

is the minimum among the 2-adic complexities of 2T new sequences corresponding
to ST (2)± 2i, i = 0, ..., T . In the case of λ2,k(S), we note that XORing a period with
an error vector with a 1 in the ith position is equivalent to the 2-adic addition (resp.
subtraction) if the corresponding bit in the period is a 0 (resp. 1) resulting in T
different new sequences. Hence the set of these T new sequences is a subset of the set
of 2T sequences considered to obtain λa

2,k(S). The relationship does not hold with k >
1 because then the new sequences produced by XORing are not necessarily produced
by 2-adic addition or subtraction. We show this using the following examples:

(i). λ2,k(S) < λa
2,k(S): Let T = 8, k = 2, and S = (10001110)∞, so that ST (2) =

113. The rational representation of S is −113/255. The lowest λ2(S) can be
obtained by adding 40 to ST (2), and hence the rational representation of the new
sequence is −(113 + 40)/255 = −153/255 = −3/5. So λa

2,k(S) = log2 5. But for
λ2,k(S) the lowest λ2(S) can be obtained by XORing with (00100100). We have
(10001110) ⊕ (00100100) = (10101010) = 85. So the rational representation of
the new sequence is −85/255 = −1/3, and so λ2,k(S) = log2 3.

(ii). λa
2,k(S) < λ2,k(S): Let T = 8, k = 2, and S = (01100110)∞, so that ST (2) =

102. The rational representation of S is −102/255. The lowest λ2(S) can be
obtained by adding 68 to ST (2), and hence the rational representation of the new
sequence is −(102 + 68)/255 = −170/255 = −2/3. So λa

2,k(S) = log2 3. But for
λ2,k(S) the lowest λ2(S) can be obtained by XORing with (00000000). We have
(01100110)⊕ (00000000) = (01100110) = 102. So the rational representation of
the new sequence is −102/255 = −2/5, and so λ2,k(S) = log2 5.
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A good starting point in analyzing the arithmetic k-error N -adic complexity would
be to compute its expected value for periodic sequences and study its relationship
with k-error N -adic complexity for N > 2.

Joint N-adic Complexity

Recall that the Fq-linear complexity of an m-fold multisequence over Fq is the linear
complexity of its corresponding single sequence over Fqm . We also know that the
smallest LFSR with taps in Fq that generates the sequence over Fqm also generates
the m component sequences. Hence the Fq-linear complexity is greater than or equal
to the joint linear complexity. This follows from the fact that the corresponding
recurrence over Fq still holds for all the m sequences over Fq. Analogous to Fq-linear
complexity we consider the following complexity measure in the N -adic case.

Definition 5.2. The N -tap Nm-adic complexity, λNm

N (S), of a sequence S over
{0, . . . , Nm − 1} is the size of the smallest FCSR with taps in {0, . . . , N − 1} that
can generate S.

We note that in Definition 5.2 if S is a periodic sequence, then an FCSR with
taps in {0, . . . , N −1} always exists, for instance, with the initial memory and all tap
coefficients except the one on the output cell set to 0.

Let S be an m-fold multisequence over {0, . . . , N − 1}. We can identify the m
component sequences of S as a single sequence S over {0, . . . , Nm − 1}. But unlike
in the linear complexity case, it is apparent that the smallest FCSR with taps in
{0, . . . , N − 1} that generates the sequence over {0, . . . , Nm − 1} may not generate
the component sequences. Hence there is no clear relationship between λN(S) and
λNm

N (S). Hong et al. [28] introduced a method of constructing sequences over Fpm

with characteristic polynomial over Fp, which can be investigated in the N -adic case.
A first task is to investigate the relationship between the joint N -adic complexity
of m-fold multisequences over {0, . . . , N − 1} and the N -tap Nm-adic complexity
of the corresponding single sequences over {0, . . . , Nm − 1}. It might be helpful
to find and evaluate new approaches to understand the joint N -adic complexity of
multisequences. While there are multisequence LFSR synthesis algorithms [84, 87],
similar algorithms are desirable for multisequence FCSR synthesis.

AFSRs and π-adic Complexity

AFSRs are generalizations of FCSRs and generate sequences over arbitrary finite
fields [42]. The architecture of an AFSR is similar to that of an FCSR. Analogous
to power series for LFSRs and N -adic numbers for FCSRs, π-adic numbers are used
to analyze AFSRs. While the coefficients for power series and N -adic numbers are
taken, respectively, from the underlying ring and the set {0, . . . , N − 1}, there may
be no such natural set to construct π-adic numbers. The expected value of the π-
adic complexity of sequences was studied for only a few families of AFSRs [40]. A
challenging problem is to extend these results to several other families of AFSRs.
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NFSRs and t-th Order Complexity

A nonlinear feedback shift register (NFSR) is like an LFSR except that the feedback
function is nonlinear as a function of the cells of the register. Associated with these
registers we have maximal order complexity (or nonlinear span) of a sequence which
is the length of the shortest NFSR that can generate the sequence. Considering effi-
ciency as a key requirement, these NFSRs are generally useful only when the degree
of the nonlinearity of the feedback function is small. This gives rise to the t-th order
nonlinear complexity, which is the length of the shortest NFSR with the degree of the
feedback function at most t that generates the sequence. Algorithms to find maximal
order complexity of sequences have been studied recently [46, 73, 74]. Rizomiliotis
gave some constructions of sequences with maximal nonlinear span [71] and provided
cryptanalytic motivation for research on nonlinear complexity [72]. Counting func-
tions, expected values, and efficient algorithms for the t-th order complexity for small
t such as t = 2, 3 are desirable.

Sequences with Large Complexity

While there are some recent results for constructions of sequences with large linear
complexity [29], similar constructions for the N -adic case are desirable. Binary se-
quences can be viewed as LFSR (resp. FCSR) sequences over F2 and also as sequences
over any finite field (resp. {0, . . . , N − 1}). A useful task is to characterize binary
sequences with high complexity over F2 but with significantly lower (higher) com-
plexity when considered over other larger sets. Also, another interesting approach is
to consider consecutive blocks of sequence bits of a fixed size m and treat each block
as an element over F2m (resp. {0, . . . , 2m−1}). If these new sequences have low linear
(resp. 2m-adic) complexity, then the original sequences become vulnerable. Here we
would like to characterize binary sequences with high complexity that have the prop-
erty that the sequences formed by consecutive blocks of sizes m have significantly
lower (higher) complexities for small m. These results impact both the cryptanalysis
and the design of cryptographically strong building blocks for stream ciphers.

Summary

Table 5.1 lists various problems dealing with FSR related sequence complexity mea-
sures. The right hand column lists various sequence complexity related problems and
the left hand column indicates the different settings in which we can try to solve
them. As surveyed in the earlier chapters, while several results are available in the
linear case, results in the N -adic and other nonlinear cases are not known for many
of these problems.

5.2 Design and Cryptanalysis of Stream Ciphers

In this section we briefly describe design principles and cryptanalytic techniques for
stream ciphers. We propose two future research directions in the design and crypt-
analysis of stream ciphers.
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Table 5.1: Complexity measures and associated problems

Settings

FSR type: LFSR, FCSR, AFSR, or NFSR

Single sequences or Multisequences

Periodic or Finite Length

Complexity type: Conventional, k-error, k-insert

k-delete, k-operation, t-th order, arithmetic k-error

Special Cases : k = 1, 2; t = 2, 3; T = pd; Fix Fq, N

Problems

Counting functions

Expected values

Complexity bounds

Complexity computation

Shift register synthesis

Asymptotic behavior

Stream Cipher Standards

Owing to the high speed requirements and the ease in implementation, hardware
implementations of stream ciphers based on LFSRs became popular in 1970s and
1980s. The A5 series of stream ciphers used in GSM cellular standard and the E0
stream cipher used in the short-range wireless radio standard Bluetooth are exam-
ples of such ciphers implemented in hardware. Word oriented software stream ciphers
implemented in software were proposed in the 1990s; LEVIATHAN (Cisco), MUGI
(Hitachi-K.U. Leuven), RC4 (R. Rivest), SNOW (Lund University), SOBER (Qual-
comm), and SEAL (IBM) are a few examples of such ciphers. For encryption using
small devices with limited resources, software based ciphers are slower and consume
more energy compared to those implemented using dedicated hardware co-processors.

The eSTREAM Project

The NESSIE (New European Schemes for Signatures, Integrity, and Encryption)
project ran from 2000 to 2004 to put together a portfolio of cryptographic primitives
through an open and transparent process. Unfortunately no stream cipher made
it to the final portfolio of NESSIE, as weaknesses were discovered in all proposed
stream ciphers. In 2004 ECRYPT, a Network of Excellence within the Information
Societies Technology (IST) Program of the European Commission was launched. In
April 2005, ECRYPT received 34 candidate stream ciphers for its eSTREAM project.
The final portfolio of eSTREAM consists of four software based stream ciphers and
three implemented in hardware. Though the project concluded in 2008, research is
still being conducted on the final candidates.

Types of Stream Ciphers

To ensure proper decryption the sender and the receiver must be synchronized. That
is, they should be operating at the same position within the key. Synchronous stream
ciphers use key streams produced independently of the plain text that is being en-
crypted. They need additional mechanisms to guarantee synchronization. In these
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schemes, if a symbol is modified due to a transmission error, only that symbol will be
decrypted erroneously. By definition synchronous ciphers guarantee no error prop-
agation. Self-synchronizing stream ciphers suffer limited error propagation but can
self-synchronize to recover from dropped or inserted symbols during the transmission.
In these ciphers, the key stream is usually produced as a function of the key and a
fixed number of previous cipher text symbols. Moustique and SSS are examples of eS-
TREAM candidates that are self-synchronizing. Only three out of the 34 submissions
to eSTREAM belong to this category. It should be noted here that since these ciphers
use cipher text to update the state, they should also withstand chosen plain text and
chosen cipher text attacks while for synchronous ciphers one only has to worry about
known plain text attacks. The eSTREAM final portfolio report declares the design
of secure self-synchronizing stream ciphers a “very significant” open problem.

To deal with the inherent linearity of LFSRs several techniques were proposed [76].
In a combination generator output symbols from several LFSRs are combined using
a nonlinear combining function, to obtain one key stream symbol at every clock. A
different approach called the filter generator uses a nonlinear function to combine the
symbols of the state of a single LFSR at every clock to produce a key stream symbol.
Sfinks and WG are eSTREAM candidates that belong to this category.

Another recently pursued approach is to use nonlinear state updates. This can be
done by clocking different LFSRs at different intervals to be used to determine key
stream symbols. eSTREAM candidates Decim, Mickey, and Pomaranch are based
on LFSRs with clocking. FCSRs, AFSRs, and NFSRs can also be used for nonlinear
updates. FFCSR-H, DRAGON, NLS, and SSS are example submissions to eSTREAM
that belong to this category.

Two Cryptanalytic Techniques

According to the eSTREAM final portfolio report some cryptanalysts currently feel
that the security analysis of stream ciphers is somewhat ad hoc. There are a number
of approaches that can be used for cryptanalysis including time-memory-data tradeoff
attacks, guess and determine attacks, and side-channel attacks. Here we only mention
two of the most important techniques.

A correlation attack [62, 79] exploits the correlation between the output of the
nonlinear function used in a filter generator and the output of one of the LFSRs of
the generator. Once high correlation is observed for a particular LFSR, using a brute
force search on the initial states of the LFSR one can choose a state that produces that
LFSR output with high correlation to the nonlinear function output. This task can be
repeated for each individual LFSR involved. Note that the attacks are probabilistic
in the sense that we guess the internal state that has a given correlation with the
output key stream; this might not always give the correct internal state.

Recently, a new cryptanalytic technique called algebraic cryptanalysis [8, 9] was
introduced. Algebraic attacks have cryptanalytic ramifications in all cryptographic
primitives including block ciphers, public key primitives, hash functions, and stream
ciphers. Algebraic attacks involve two steps:
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(i). Find a set of “simple” multivariate equations that describe the cryptosystem.

(ii). Solve the system of equations obtained in step (i).

In the context of stream ciphers the multivariate equations involve the initial state
(key) and the key stream. If the system of equations is sparse, low degree, and
overdefined it will be easier to solve. Several techniques such as linearization, algo-
rithms using Gröbner bases such as F4, and dedicated algorithms such as XL and
XSL are available to solve such systems of equations. Although the time complexity
of launching algebraic attacks is not completely understood, they are very interesting
and useful because they require very few known plain texts.

Future Research Problems

In the context of stream cipher design and analysis we propose these two problems.

(i). Although most current stream cipher designs guarantee high complexities for
key streams generated, complexities after a few modifications are performed on
the key sequences are not studied thus far. Current literature on error com-
plexity measures does not address their impact on the cryptanalysis of specific
stream cipher designs. We plan to study the error complexity values for key
streams used in stream ciphers selected for the eSTREAM portfolio to see if
they expose any further weaknesses in them.

(ii). While there are several stream ciphers based on LFSRs, FFCSR stream ciphers
are the first popular FCSR based ciphers featuring Galois mode FCSRs [22]
and a linear filtering function. Although they were initially included in the
eSTREAM final portfolio, a real time attack exploiting a weakness when all
carry cells except the initial one contain zeroes was recently demonstrated [27].
Despite this specific attack, the memory component in FCSRs makes it diffi-
cult to launch algebraic and correlation attacks against them in general as the
number and degree of multivariate equations would be very high. So an impor-
tant research task is to design and analyze new FCSR based stream ciphers.
As a first step we would like to explore whether Galois mode d-FCSRs [22]
offer resistance to the real time attacks on FFCSR stream ciphers. Evaluating
the potential of generalized AFSRs for use in stream ciphers is also a future
challenging problem.

Copyright c© Ramakanth Kavuluru, 2009.

85



www.manaraa.com

References
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[2] A. Alecu and A. Sălăgean. Modified Berlekamp-Massey algorithm for approx-
imating the k-error linear complexity of binary sequences. In S. D. Galbraith,
editor, IMA Int. Conf., volume 4887 of LNCS, pages 220–232. Springer, 2007.
37

[3] F. Arnault and T. P. Berger. Design and properties of a new pseudorandom
generator based on a filtered FCSR automaton. IEEE Trans. on Computers,
64(11):1364–1383, 2005. 2

[4] F. Arnault, T. P. Berger, and A. Necer. Feedback with carry shift registers
synthesis with the euclidean algorithm. IEEE Trans. Inform. Theory, 50(5):910–
917, 2004. 10

[5] S. Blackburn. Fast rational interpolation, reed-solomon decoding, and the linear
complexity profiles of sequences. IEEE Trans. Inform. Theory, 43(2):537–548,
1997. 8

[6] R. Blahut. Transform techniques for error control codes. IBM Journal of Re-
search and Development, 23:299–315, 1979. 16

[7] H. Chen. Fast algorithms for determining the linear complexity of sequences over
GF (pm) with period 2tn. IEEE Trans. Inform. Theory, 51(5):1854–1856, 2005.
37

[8] N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
D. Boneh, editor, CRYPTO, volume 2729 of LNCS, pages 176–194, 2003. 84

[9] N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear
feedback. In E. Biham, editor, EUROCRYPT, volume 2656 of LNCS, pages
345–359, 2003. 84

[10] R. Couture and P. L’Ecuyer. Distribution properties of multiply-with-carry ran-
dom number generators. Mathematics of Computation, 66:591–607, 1997. 5

[11] Z. Dai, S. Jiang, K. Imamura, and G. Gong. Asymptotic behavior of normal-
ized linear complexity of ultimately nonperiodic binary sequences. IEEE Trans.
Inform. Theory, 50(11):2911–2915, 2004. 11

[12] C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers.
Springer, 1991. 11, 37

86



www.manaraa.com

[13] L. Dong, Y. Hu, and Y. Zeng. Computing the k-error N -adic complexity of
a sequence of period pn. In G. Gong, T. Helleseth, H.-Y. Song, and K. Yang,
editors, SETA 2006, volume 4086 of LNCS, pages 190–198. Springer, 2006. 38

[14] Ecrypt stream ciphers project. http://www.ecrypt.eu.org/stream/. 12

[15] T. Etzion. Constructions for perfect maps and pseudorandom arrays. IEEE
Trans. Inform. Theory, 34(5):1308–1316, 1988. 38

[16] T. Etzion, N. Kalouptsidis, N. Kolokotronis, K. Limniotis, and K. G. Patterson.
On the error linear complexity profiles of binary sequences of period 2n. Int.
Symp. Inform. Theory, pages 2400–2404, 2008. 56, 57

[17] Z. Fengxiang and Q. Wenfeng. The 2-error linear complexity of 2n-periodic
binary sequences with linear complexity 2n − 1. Journal of Electronics (China),
24(3):390–395, 2007. 45, 46, 52

[18] F.-W. Fu, H. Niederreiter, and M. Su. The characterization of 2n-periodic binary
sequences with fixed 1-error linear complexity. In G. Gong, T. Helleseth, H.-Y.
Song, and K. Yang, editors, SETA 2006, volume 4086 of LNCS, pages 88–103.
Springer, 2006. 44, 57, 58, 66

[19] R. A. Games and A. H. Chan. A fast algorithm for determining the complexity
of a pseudo-random sequence with period 2n. IEEE Trans. Inform. Theory,
29(1):144–146, 1983. 37, 40

[20] S. Golomb. Shift Register Sequences. Aegean Park Press, 1982. 4

[21] S. Golomb and G. Gong. Signal Design for Good Correlation: For Wireless
Communication, Cryptography, and Radar. Cambridge University Press, 2005.
4

[22] M. Goresky and A. Klapper. Fibonacci and Galois representations of feedback-
with-carry shift registers. IEEE Trans. Inform. Theory, 48(11):2826–2836, 2002.
85

[23] M. Goresky and A. Klapper. Algebraic Shift Register Sequences. Preprint, 2007.
4, 7, 9, 10, 17

[24] M. Goresky, A. Klapper, and L. Washington. Fourier transforms and the 2-adic
span of periodic binary sequences. IEEE Trans. Inform. Theory, 46(2):687–691,
2000. 16

[25] F. Gustavson. Analysis of the Berlekamp-Massey linear feedback shift register
synthesis algorithm. IBM Journal of Research and Development, 20:204–212,
1976. 15

[26] Y. K. Han, J.-H. Chang, and K. Yang. On the k-error linear complexity of pm-
periodic binary sequences. IEEE Trans. Inform. Theory, 53(6):2297–2304, 2007.
26, 37

87

http://www.ecrypt.eu.org/stream/


www.manaraa.com

[27] M. Hell and T. Johansson. Breaking the f-fcsr-h stream cipher in real time.
In J. Pieprzyk, editor, ASIACRYPT, volume 5350 of LNCS, pages 557–569.
Springer, 2008. 85

[28] Y.-P. Hong, Y.-C. Eun, J.-H. Kim, and H.-Y. Song. Linear complexity of se-
quences over arbitrary symbols and constructions of sequences over Fpk whose
characteristic polynomial is over Fp. In Intl. Symp. Inform. Theory., page 468,
2002. 81

[29] H. Hu, , G. Gong, and Z. Dai. New results on periodic sequences with large
k-error linear complexity. Int. Symp. Inform. Theory, pages 2409–2413, 2008.
16, 82

[30] H. Hu and D. Feng. On the 2-adic complexity and the k-error 2-adic complexity
of periodic binary sequences. In T. Helleseth, D. V. Sarwate, H.-Y. Song, and
K. Yang, editors, SETA 2004, volume 3486 of LNCS, pages 185–196. Springer,
2004. 17, 31

[31] H. Hu, L. Hu, and D. Feng. On the expected value of the joint 2-adic complexity
of periodic binary multisequences. In G. Gong, T. Helleseth, H.-Y. Song, and
K. Yang, editors, SETA 2006, volume 4086 of LNCS, pages 199–208. Springer,
2006. 17, 34

[32] S. Jiang, Z. Dai, and K. Imamura. Linear complexity of a sequence obtained
from a periodic sequence by either substituting, insertion or deleting k symbols
within one period. IEEE Trans. Inform. Theory, 46(3):1328–1331, 2000. 18, 19,
23

[33] T. Kaida, S. Uehara, and K. Imamura. A new algorithm for the k-error linear
complexity of sequences over GF (pm) with period pn. In C. Ding, T. Helleseth,
and H. Niederreiter, editors, SETA 1998, pages 284–296. Springer, 1999. 37

[34] R. Kavuluru. 2n-periodic binary sequences with fixed 2-error or 3-error linear
complexity. In S. Golomb, M. Parker, A. Pott, and A. Winterhof, editors, SETA
2008, volume 5203 of LNCS, pages 252–265. Springer, 2008. 57

[35] R. Kavuluru. Characterization of 2n-periodic binary sequences with fixed 2-error
or 3-error linear complexity. Designs, Codes, and Cryptography, 53(2):75–97,
2009. 57

[36] R. Kavuluru and A. Klapper. Counting functions for the k-error linear complex-
ity of 2n-periodic binary sequences. to appear in the LNCS proceedings of the
15th annual workshop on Selected Areas in Cryptography (SAC 2008). 45

[37] R. Kavuluru and A. Klapper. On the k-operation linear complexity of periodic
sequences. In K. Srinathan, C. P. Rangan, and M. Yung, editors, INDOCRYPT
2007, volume 4859 of LNCS, pages 322–330. Springer, 2007. 19

88



www.manaraa.com

[38] R. Kavuluru and A. Klapper. Lower bounds on error complexity measures for pe-
riodic LFSR and FCSR sequences. Cryptography and Communications: Discrete
Structures, Boolean Functions, and Sequences, 1:95–116, 2009. 19

[39] A. Klapper. The asymptotic behavior of N -adic complexity. Advances in Math-
ematics of Communications, 1(3):307–319, 2007. 11

[40] A. Klapper. Expected π-adic security measures of sequences. In S. Golomb,
M. Parker, A. Pott, and A. Winterhof, editors, SETA 2008, volume 5203 of
LNCS, pages 219–229. Springer, 2008. 81

[41] A. Klapper and M. Goresky. Feedback shift registers, combiners with memory,
and 2-adic span. J. Cryptology, 10:111–147, 1997. 5, 10

[42] A. Klapper and J. Xu. Algebraic feedback shift registers. Theoretical Computer
Science, 226(1-2):61–92, 1999. 81

[43] K. Kurosawa, F. Sato, T. Sakata, and W. Kishimoto. A relationship between
linear complexity and k-error linear complexity. IEEE Trans. Inform. Theory,
46(2):694–698, 2000. 25, 64

[44] A. Lauder and K. Patterson. Computing the error linear complexity spectrum
of a binary sequence of period 2n. IEEE Trans. Inform. Theory, 49(1):273–280,
2003. 37, 38, 56

[45] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1997. 4

[46] K. Limniotis, N. Kolokotronis, and N. Kalouptsidis. On the nonlinear complexity
and Lempel-Ziv complexity of finite length sequences. IEEE Trans. Inform.
Theory, 53(11):4293–4302, 2007. 82

[47] G. Marsaglia. The mathematics of random number generators. In S. A. Burr,
editor, The Unreasonable Effectiveness of Number Theory, volume 42 of Proc.
Symp. Appl. Math., pages 73–92. Amer. Math. Soc., 1992. 5

[48] J. L. Massey. Shift register synthesis and BCH decoding. IEEE Trans. Inform.
Theory, 15(1):122–127, 1969. 8

[49] J. L. Massey and T. Schaub. Linear complexity in coding theory. In G. D.
Cohen and P. Godlewski, editors, Coding Theory and Applications, volume 311
of LNCS, pages 19–32, 1988. 16

[50] R. McEliece. Finite Fields For Computer Scientists and Engineers. Kluwer
Academic Publishers, 1989. 4

[51] W. Meidl. Extended Games-Chan algorithm for the 2-adic complexity of FCSR
sequences. Theoretical Computer Science, 290(3):2045–2051, 2003. 37

[52] W. Meidl. How many bits have to be changed to decrease the linear complexity?
Designs, Codes, and Cryptography, 33(2):109–122, 2004. 26, 37

89



www.manaraa.com

[53] W. Meidl. On the stability of 2n-periodic binary sequences. IEEE Trans. Inform.
Theory, 51(3):1151–1155, 2005. 37, 44, 45, 46, 65

[54] W. Meidl. Reducing the calculation of the linear complexity of u2v-periodic
binary sequences to Games-Chan algorithm. Designs, Codes, and Cryptography,
46(1):57–65, 2008. 37

[55] W. Meidl and H. Niederreiter. Counting functions and expected values for the
k-error linear complexity. Finite Fields and Applications, 8:142–154, 2002. 15

[56] W. Meidl and H. Niederreiter. Linear complexity, k-error linear complexity, and
the discrete fourier transform. J. Complexity, 18(1):87–103, 2002. 16, 37

[57] W. Meidl and H. Niederreiter. On the expected value of linear complexity and
the k-error linear complexity of periodic sequences. IEEE Trans. Inform. Theory,
48(11):2817–2825, 2002. 16

[58] W. Meidl and H. Niederreiter. The expected value of the joint linear complexity
of periodic multisequences. J. Complexity, 19(1):61–72, 2003. 12, 13, 16

[59] W. Meidl and H. Niederreiter. Periodic sequences with maximal linear complex-
ity and large k-error linear complexity. Appl. Algebra Eng. Commun. Comput.,
14(4):273–286, 2003. 16

[60] W. Meidl, H. Niederreiter, and A. Venkateswarlu. Error linear complexity mea-
sures for multisequences. J. Complexity, 23(2):169–192, 2007. 13, 16

[61] W. Meidl and A. Venkateswarlu. Remarks on the k-error linear complexity of
pn-periodic sequences. Designs, Codes, and Cryptography, 42(2):181–193, 2007.
37

[62] W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers.
J. Cryptology, 1(3):159–176, 1989. 84

[63] H. Niederreiter. A combinatorial approach to probabilistic results on the linear
complexity profile of random sequences. J. Cryptology, 2(2):105–112, 1990. 11,
16

[64] H. Niederreiter. Linear complexity and related complexity measures for se-
quences. In T. Johansson and S. Maitra, editors, INDOCRYPT, volume 2904 of
LNCS, pages 1–17. Springer, 2003. 16

[65] H. Niederreiter. Periodic sequences with large k-error linear complexity. IEEE
Trans. Inform. Theory, 49(2):501–505, 2003. 16

[66] H. Niederreiter and I. Shparlinski. Recent advances in the theory of nonlin-
ear pseudorandom number generators. In K. T. Fang, F. J. Hickernell, and
H. Niederreiter, editors, MCQMC 2000, pages 86–102. Springer-Verlag, 2002. 8

90



www.manaraa.com

[67] H. Niederreiter and I. Shparlinski. Periodic sequences with maximal linear com-
plexity and almost maximal k-error linear complexity. In K. G. Paterson, editor,
IMA Int. Conf., volume 2898 of LNCS, pages 183–189. Springer, 2003. 16

[68] H. Niederreiter and A. Venkateswarlu. Periodic multisequences with large error
linear complexity. Designs, Codes, and Cryptography, 49(1-3):33–45, 2008. 16

[69] H. Niederreiter and L.-P. Wang. Proof of a conjecture on the joint linear complex-
ity profile of multisequences. In S. Maitra, C. E. V. Madhavan, and R. Venkate-
san, editors, INDOCRYPT 2005, volume 3797 of LNCS, pages 13–22. Springer,
2005. 12

[70] K. Patterson. Perfect maps. IEEE Trans. Inform. Theory, 40(3):743–753, 1994.
38

[71] P. Rizomiliotis. Constructing periodic binary sequences with maximum nonlinear
span. IEEE Trans. Inform. Theory, 52(9):4257–4261, 2006. 82

[72] P. Rizomiliotis. Remarks on the new attack on the filter generator and the role
of high order complexity. In S. D. Galbraith, editor, IMA Int. Conf., volume
4887 of LNCS, pages 204–219. Springer, 2007. 82

[73] P. Rizomiliotis and N. Kalouptsidis. Results on the nonlinear span of binary
sequences. IEEE Trans. Inform. Theory, 51(4):1555–1563, 2005. 82

[74] P. Rizomiliotis, N. Kolokotronis, and N. Kalouptsidis. On the quadratic span of
binary sequences. IEEE Trans. Inform. Theory, 51(5):1840–1848, 2005. 82

[75] R. A. Rueppel. New Approaches to Stream Ciphers. PhD thesis, Swiss Federal
Institute of Research, 1984. 5

[76] R. A. Rueppel. Analysis and Design of Stream Ciphers. Springer, 1986. 10, 39,
84
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